共查询到16条相似文献,搜索用时 78 毫秒
1.
有效热导率是开孔泡沫金属复合材料热传输热性的重要参数,基于三维结构的复杂性,从边界模型和晶胞分析模型两个方面出发,较为全面地概述了有效热导率的研究现状。指出边界模型以均质化方法宏观分析热传导问题而忽略了微观孔结构的影响,重点阐述晶胞分析模型中立方体模型和开尔文模型的经验相关性分析方法,指出其关键点在于以孔隙率形式将多孔结构形状参数拟合成可调参数表达式。此外,3D断层扫描与数值模拟相结合,阐述lattice-Boltzmann方法对开孔泡沫结构的研究,突出真实孔结构对有效热导率的影响和规律。展望后期研究重点是经验相关模型的精确拟合方式及特征关联式的统一化,高精度数值模拟计算中的简化对比分析模型。 相似文献
2.
3.
4.
5.
相变材料的低热导率是限制潜热蓄热广泛应用的重要原因。将相变材料石蜡真空条件下注入到泡沫金属铜内制备泡沫金属铜-石蜡复合相变材料,通过铜的高热导率及高孔隙材料的大面体比来强化相变换热过程。采用DSC示差扫描量热法对石蜡进行热物性测量获得准确的石蜡相变温度及相变潜热。以管壳式相变蓄热结构为对象,提取对称结构进行可视化设计,对比纯石蜡及泡沫金属铜-石蜡复合材料在相同运行条件下的相变过程,追踪二者熔化过程的相界面位置随时间的演化过程并布置热电偶准确测量材料内部的温度分布。结果显示加入泡沫金属后的复合材料的内部温差明显减小,温度分布均匀,蓄热热通量显著增大,有效缩短相变时间并缓解了自然对流造成的顶部过热和底部不熔化现象。 相似文献
6.
采用分形理论,描述了纳米颗粒多孔介质材料的微尺度空间结构,建立了分形等效单元体模型,分析了影响其真空下有效热导率关键因素为固体基质热导率、填充率、分形维数、分形直径、残余气体压力及热导率等,并导出了气相、固相热传导计算公式和热辐射等效热导率计算公式及多孔介质材料总有效热导率计算公式。研究表明,纳米颗粒有效热导率随着分形直径、残余气体压力的增大而增大,并给出了纳米颗粒多孔介质材料作为真空材料的最佳直径。同时,模型计算值与实验测量值比较,具有较好的一致性。该理论分析方法对新型真空绝热材料的研制和绝热性能的提高具有实用价值。 相似文献
7.
本文以环戊烷发泡硬质聚氨酯泡沫为研究对象,采用薄片室温老化原理连续测量两种密度样品165天长期导热系数,发现导热系数的升高呈现2个阶段。通过对所得曲线进行函数拟合发现导热系数变化符合对数关系,对数方程求解初步得到25年后50mm制品的导热系数。考虑到制样过程中无法避免样品表面发生开孔,最后对函数计算得到的数据进行修正,修正结果显示两种密度样品的长期导热系数均不超过0.029 W(m•K)-1。 相似文献
8.
钱伯章 《合成材料老化与应用》2008,37(3)
德国Biose州立大学与西北大学的一个研究团队在国家科学基金资助下,于2008年初宣布,开发了新一类材料:磁性存储形状金属泡沫。该泡沫出镍。锰一镓(Ni—Mn—Ga)合金组成。这种磁性存储形状金属可望用于汽车和航天器减重。 相似文献
9.
10.
开孔金属泡沫内流动特性的研究多局限于局部流动特性的分析,大尺寸(100cm2以上)金属泡沫内气液两相宏观流动特性的研究目前较为缺乏。为了深入认识金属泡沫内气液两相流动特性,本文通过光学可视化手段,对金属泡沫多孔介质薄层内的气/液驱替、液/气驱替两相流动过程进行研究,分析了入侵流体的流速及金属泡沫的孔径对泡沫薄层内两相流动的影响。结果表明:在气/液驱替流动方面,随着空气流速的增大,气液两相的界面形态由毛细指状结构过渡到黏性指状结构,随着泡沫孔径的减小,部分排水现象愈加显著;在液/气驱替流动方面,气液界面较为规则,近似呈锥形,且流速越大,界面锥角越大、长度越小,试验中仅在最小孔径的金属泡沫中捕捉到明显的部分驱替现象,并且随着水流速的减小愈加显著。 相似文献
11.
12.
多孔泡沫是一类低密度、高比表面积、具有独特性能的新型功能材料。实际多孔泡沫材料通常是非均质的,即其孔隙结构分布是随机的。为研究非均质多孔泡沫材料的导热性能,提出用孔隙均匀度作为表征孔隙结构分布随机性的参数,以多孔石墨泡沫为例,分析孔隙均匀度对多孔泡沫有效热导率的影响。数值计算结果表明:孔隙结构分布越不均匀,多孔泡沫材料的导热性能越差。根据计算结果提出了非均质石墨泡沫相对有效热导率的预测式,并与现有文献报道的结果进行了比较,发现当前结果呈现了孔隙结构随机性对材料有效热导率的影响,与ORNL实验结果更吻合。 相似文献
13.
14.
15.
16.
泡沫金属具有超大比表面积,应用在除湿领域有很大潜力;保证泡沫金属表面冷凝液滴的及时排出是开发泡沫金属除湿换热器的关键,因此必须明确泡沫金属的排水性能。通过动态浸入实验,研究了3种不同润湿性下泡沫金属结构特性对排水性能的影响。研究结果表明:泡沫金属的孔密度越大,孔隙率越低,重力方向高度越大,排水性越差;疏水改性下5~40PPI泡沫金属的排水性能增强,残余水量减少26%~60%;亲水改性下5~10PPI泡沫金属的排水性能增强,残余水量最多降低23%,但15~40PPI泡沫金属的排水性能减弱,残余水量最多增大13%。 相似文献