首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
在以鼓泡塔为代表的气液鼓泡流动中,存在着气泡诱导湍流(BIT)和剪切湍流两种湍流机制,并且二者在不同的时间、空间范围内既相互竞争又共同作用。受制于BIT动能能谱的形式和特性不够完整清晰,过去的研究中关于BIT如何对气泡破碎聚并、相间作用力、相间传热传质等相间相互作用过程产生影响的结论比较模糊。因此,本文在具有波数κ-3特性的BIT能谱的基础上,提出了在不同工况下考虑BIT与剪切湍流共同作用的研究思路。研究结果表明,考虑两种湍流机制的气泡破碎模型和湍流相间扩散模型对BIT在整体或局部占据不同程度主导地位的情况,都能很好地捕捉气液鼓泡流动的动力学特性,为进一步准确揭示气液相间传质过程的内在机理提供了基础。  相似文献   

2.
垂直圆管内湍流泡状流的数值研究   总被引:4,自引:1,他引:3       下载免费PDF全文
顾汉洋  郭烈锦 《化工学报》2004,55(4):563-568
在经典Euler/Euler型水动力模型基础上,引入考虑不同直径气泡的种群平衡方程来描述气液两相泡状流,对液相和气相分别建立了基本方程,通过对气泡的受力分析并考虑气泡之间聚合和破碎效应后给出了本构方程,建立了封闭的双流体模型并用于垂直管道湍流泡状流的三维数值模拟.模型预测值与实验数据的比较结果表明该模型能较好地模拟垂直管道湍流泡状流中的相含率分布、速度分布、湍动能分布、气泡直径分布以及气泡直径分布的演变过程.  相似文献   

3.
于米满  姬爱民 《辽宁化工》2022,(8):1066-1069
目前针对气浮过程的CFD-PBM数值计算方法中往往仅考虑气泡聚并行为,而忽略其破碎行为。为了验证气浮过程中仅考虑气泡聚并行为的数值计算方法准确性,在ANSYS Fluent平台使用CFD-PBM耦合方法针对科莫微尺度和气泡直径的分布规律进行了研究,得出气浮接触区大部分流域当中科莫微尺度均大于气泡直径,因此验证了针对气浮池接触区中气泡聚并行为数值计算时忽略气泡破碎行为的准确性。  相似文献   

4.
A model for a bubble column slurry reactor is developed based on the experiment of Rhenpreuszen-Koppers demonstration plant for slurry phase Fischer-Tropsch synthesis reported by Koelble et al. This model is applicable to the operation in the churn-turbulent regime and incorporates the information on the bubble size. The axial dispersion model is adopted to describe the flow characteristics of the Fischer-Tropsch slurry reactor. With the model developed, simulations are performed to identify the steady state behavior of a Fischer-Tropsch slurry reactor of commercial size. Predictions of the two-bubble class model is compared with that of the conventional single- bubble class model. The results show that under a variety of conditions, the two-bubble class model gives results different from those for the single-bubble class model.  相似文献   

5.
赵宗昌  尹曹勇 《化工学报》2006,57(12):2834-2839
在分析研究分散相黏度对液滴变形和破碎影响的基础上,提出了一个改进的液滴破碎频率模型并拓展了液滴破碎判据标准.同时通过Monte Carlo模拟的随机方法,得到了湍流搅拌槽中液-液分散体系的液滴直径分布和Sauter平均直径d32.通过与文献中关于d32的实验结果比较发现,该模型预测的Sauter平均直径更接近实验值,对于黏性分散相改进的液滴破碎频率模型要优于Coulaloglou和Tavlarides提出的模型.计算结果表明对于黏性分散相液滴,其黏度限制了液滴变形,使得液滴破碎频率被大大减少, 液滴直径明显增加,液滴直径分布向右偏移.  相似文献   

6.
介绍了旋流场中颗粒与气泡的碰撞过程及它的两种方式。由于力场的存在,受到剪切应力的作用而发生破碎,介绍了破碎的原因以及力场中的剪切力、力场中的湍流及湍流能。  相似文献   

7.
杨侠  杨清  吴艳阳  万攀  刘丰良 《化工进展》2014,(2):319-322,345
为了进一步探讨电场对沸腾传热强化机理,以水为实验工质,实验研究了电场作用下沸腾单个气泡的行为特性。通过直接加热法产生单个沸腾气泡,并利用高速摄像机拍摄观察了不同热流密度和电场强度组合工况下气泡的生长过程,并对该过程中对电场作用下气泡的脱离形态、周期和长径比等行为特性变化进行了相关定性分析,根据实验结果和相关定性分析,进一步合理阐释了电水动力学强化沸腾传热机理。结果表明:外加电场工况后,电场对沸腾气泡的脱离形态有显著的影响,气泡沿场强方向拉伸变形且场强越大,拉伸变形越明显;气泡的脱离长径比随着电场强度和热流密度的增大而变大;气泡的脱离周期随着电场强度和热流密度的增大而减小。这表明电场和热场协同作用有助于减小气泡的停留时间来减小热源于流体之间的热阻,进一步说明电场和热场对沸腾强化传热有一定的影响。  相似文献   

8.
对搅拌槽内原油-水分散体系中液滴的破碎过程进行了实验和理论分析。实验测定了在不同温度和转速条件下油滴的粒径分布以及最大稳定粒径,并采用以Voigt模型为基础的理论对最大稳定粒径进行了计算。在温度较低时,原油表现出了具有触变性的流变学性质,经过计算和数量级分析,液滴破碎时间与粘度达到平衡的时间相比非常短,可认为在破碎过程中液滴的粘度始终为初始粘度。实验结果与以初始粘度计算的理论值吻合较好。  相似文献   

9.
三相循环流化床中气泡大小及其分布的实验研究   总被引:9,自引:3,他引:9       下载免费PDF全文
用光纤探头技术对三相循环流化床中的气泡大小及其分布进行了系统研究 ,实验测定了操作条件对气泡大小及其分布的影响规律 .实验结果表明 ,三相循环流化床中气泡的大小分布可用对数正态分布表征 ,在实验条件下气泡平均直径在床中心区域较小且沿半径方向由中心向边壁逐渐增大 ,并随表观气速的增大而减小 ,随固含率的增大而增大 ,表观液速对气泡平均直径的影响较小  相似文献   

10.
为了研究双孔喷气工况下,孔径及孔间距对气泡的影响规律,通过可视化实验方法研究双孔壁面逸出气泡的运动特性,对不同孔径及孔间距情况下的两列气泡的运动轨迹、气泡脱离尺寸、气泡速度进行分析,并与单孔气泡生成及运动特性进行对比,得到孔口间距及孔口直径对气泡的影响规律。实验结果表明,当两列气泡并排上升时,两气泡之间距离并不会保持恒定,而是会出现相互靠近—远离—再靠近的循环震荡过程,且孔间距越小,气泡上升时所伴随的左右震荡的振幅越大;在孔径及气体流量均相同时,孔间距越小,脱离尺寸越小,气泡最终的稳定速度越小;当孔间距及气体流量均相同时,孔径越大,气泡的脱离尺寸越大,脱离尺寸与单孔情况的差值越大,气泡最终的稳定速度越大。  相似文献   

11.
The bubble breakups in a jet bubbling reactor are captured using a high-speed camera and the velocity field is measured by particle image velocimetry. Two typical breakup patterns, jet breakup and jet-vortex breakup are observed. The breakup time interval of the jet-vortex breakup is two orders of magnitude higher than the jet breakup. The probability of the jet-vortex breakup and the jet breakup accounting in the total breakup events increases and decreases with the jet velocity and the mother bubble size, respectively. The bubble breakup region increases with the jet velocity. The bubble breakup frequency increases with the turbulent dissipation rate and the mother bubble size. The average number of daughter bubbles increases with the Weber number. An L-shaped daughter bubble size distribution is observed. Empirical correlations are established for the bubble breakup frequency, the average number of daughter bubbles and daughter bubble size distribution, and fitted well with the experimental results.  相似文献   

12.
The breakup of air bubbles in a turbulent water flow is studied experimentally. Water flows from a nozzle array, generating intense turbulence, and then flows downward through a cell. The velocity field is measured by PIV, and the local dissipation rate is estimated using a large‐eddy PIV technique. Bubbles (1.8 to 5 mm) are injected in the bottom of the cell and rise toward the region of intense turbulence, where they break. The time spent by bubbles in various zones without breaking and the number of breakups are evaluated, providing information about the breakup frequency. The number of daughter bubbles and their size distribution are determined. The number of daughters depends on a Weber number , where ? is the turbulent energy dissipation rate, D′ is the mother particle size, ρ and σ are the liquid density and surface tension. The daughter size distribution is a function of their number. © 2017 American Institute of Chemical Engineers AIChE J, 64: 740–757, 2018  相似文献   

13.
Pressure has a significant effect on bubble breakup, and bubbles and droplets have very different breakup behaviors. This work aimed to propose a unified breakup model for both bubbles and droplets including the effect of pressure. A mechanism analysis was made on the internal flow through the bubble/droplet neck in the breakup process, and a mathematical model was obtained based on the Young–Laplace and Bernoulli equations. The internal flow behavior strongly depended on the pressure or gas density, and based on this mechanism, a unified breakup model was proposed for both bubbles and droplets. For the first time, this unified breakup model gave good predictions of both the effect of pressure or gas density on the bubble breakup rate and the different daughter size distributions of bubbles and droplets. The effect of the mother bubble/droplet diameter, turbulent energy dissipation rate and surface tension on the breakup rate, and daughter bubble/droplet size distribution was discussed. This bubble breakup model can be further used in a population balance model (PBM) to study the effect of pressure on the bubble size distribution and in a computational fluid dynamics‐population balance model (CFD‐PBM) coupled model to study the hydrodynamic behaviors of a bubble column at elevated pressures. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1391–1403, 2015  相似文献   

14.
The breakup process of a single drop in homogeneous isotropic turbulence was studied using direct numerical simulations. A diffuse interface free energy lattice Boltzmann method was applied. The detailed visualization of the breakup process confirmed breakup mechanisms previously outlined such as initial, independent, and cascade breakups. High‐resolution simulations allowed to visualize another drop breakup mechanism, burst breakup, which occurs when the mother drop has a large volume, and the flow is highly turbulent. The simulations indicate that the type of the breakup mechanism is a strong function of mother drop size and energy input. Large mother drops in highly turbulent flow fields are more likely to burst, producing a large number of drops of the size close to the Kolmogorov length scale. Small drops in moderate turbulence tend to break only once (initial breakup). The interfacial energy of a drop was tracked as a function of time during drop deformation and breakage. The maximum energy level of the deformed mother drop was compared to commonly used estimates of critical energy necessary to break a drop. Our results show that these reference levels of critical energy are usually underestimated. Moreover, in some cases even if the critical energy level was exceeded, the drop did not break because the time of the interaction between the drop and the eddies was not enough to finish the breakup. The numerical insight presented here can be used as a guideline for the selection of assumptions and simplifications behind breakup kernels.  相似文献   

15.
The dynamics and breakup of bubbles in swirl-venturi bubble generator (SVBG) are explored in this work. The three-dimensional movement process and breakup phenomena of bubbles are captured by one high-speed camera system with two cameras while the distribution of swirling flow field is recorded through Particle Image Velocimetry technology. It is revealed that bubbles have two motion trajectories, which are deeply related to bubble breakup. One trajectory is that mother bubble moves upward in an axial direction of the SVBG to the diverging section, and the other trajectory is that mother bubble rotates obliquely upward to another side-wall along the radial direction. Meanwhile, binary breakup, shear-off-induced breakup, static erosive breakup, and dynamic erosive breakup are observed. For relatively high liquid Reynolds number, vortex flow regions are extended and the bubble size is reduced. Furthermore, it is worth noting that the number of microbubbles increases significantly for intensive swirling flow.  相似文献   

16.
The deformation of moving slug bubbles and its influence on the bubble breakup dynamics in microchannel were studied. Three bubble morphologies were found in the experiment: slug, dumbbell and grenade shapes. The viscosity effect of continuous phase aggravates the velocity difference between the fluid near the wall and the bubble, resulting in that the continuous phase near the bubble head flows towards and squeezes the bubble tail, which causes the deformation of bubbles. Moreover, the experimental results show that the deformation of bubbles could significantly prolong the bubble breakup period at the downstream Y-junction. There exists the critical capillary number CaCr for the asymmetric breakup of grenade bubbles, CaCr increases with the rise of flow rate and viscosity of the continuous phase.  相似文献   

17.
Generalized phenomenological model, based on the theories of probability and isotropic turbulence, is developed for multiple breakup of fluid particles in turbulent flow field. The approach uses a series of successive binary breakup events occur at a time scale comparable to the colliding eddy turnover time. It was found that the use of energy density, instead of energy, will increase the predicted binary breakup rate which is usually underestimated by the existing models in the literature. Generalization of the binary breakup model for multiple fragmentations is performed by defining a “remaining energy function” for the colliding eddy which means the contribution of original eddy to the later breakup events. For ternary breakage, the model shows a reasonably good agreement with the experimental data. The quaternary fragmentation frequency, however, is of negligible importance at lower energy dissipation rates but its contribution to breakage fraction at higher energy dissipation rates becomes considerable. The results also show that ternary and quaternary breakups have a considerable 90% contribution to the overall fragmentation, while pentenary and further fragmentations are of lower importance at low energy dissipation rates. At higher levels of energy dissipation rate, fragmentations up to six daughter particles contribute to more than 95% of the overall fragmentations. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4508–4525, 2016  相似文献   

18.
19.
20.
This paper presents a literature review on mechanisms and models for the breakage of bubbles and drops (fluid particles) in turbulent dispersions. For the mechanisms, four categories are summarized, namely, turbulence fluctuation, viscous shear stress, shearing-off process and interfacial instability. The models for breakup frequency and daughter size distribution available in literature are reviewed thoroughly. The development and limitation of the existing models are studied and possible improvements are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号