首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
激光诱导击穿光谱(LIBS)技术分析P、S、C元素时,分析波长一般在165~200nm之间,为真空紫外线光谱区,定量分析存在一定难度。根据铁矿石样品特性和分析元素的特点,采用LIBS技术对压片处理(压力为20t、恒压时间10s)的铁矿石标准物质中P、S、C元素进行了定量表征。最终选定样品室环境为抽真空充氩气(Ar)、样品室真空度为50Pa、激发的剥蚀条件为20个预剥蚀、30个剥蚀,并绘制了P、S、C元素定量表征的校准曲线,线性相关系数分别为0.998、0.997、0.998,由此建立了基于LIBS技术的铁矿石成分定量表征方法。采用实验建立的表征方法对铁矿石标准物质中P、S、C进行了定量分析,标准物质GSB03-2023-2006中P、S的测试结果,标准物质GSB03-2855-2012中P、S、C的测试结果分别与认定值相符。结果表明,LIBS技术可以对铁矿石中P、S、C元素实现快速的定量表征。  相似文献   

2.
激光诱导击穿光谱(LIBS)是一种原子发射光谱,具有实时、原位、微损、远距离、多元素同时分析等优势,在铁矿石检测领域受到关注。由于激光能量波动、基体效应、样品表面形貌等因素,LIBS在铁矿石定性、定量分析方面存在很多问题。化学计量学作为一种数据处理方法,能过滤噪声和提取有效信息,连接光谱与分析结果,对LIBS分析检测起到关键桥梁作用。近10年LIBS在铁矿石检测中的应用逐渐得到重视,LIBS可应用于鉴别铁矿石酸碱性,也可用于分析铁矿石原产地。针对铁矿石中全铁、钙、镁、硅、铝、钾、磷含量以及烧失量的定量分析,LIBS结合多变量回归已开展探索性工作,但工业应用仍不成熟。因此,如何推动LIBS在铁矿石检测领域的应用落地,仍然是一项重大挑战。  相似文献   

3.
激光诱导击穿光谱(LIBS)是一种原子发射光谱,具有实时、原位、微损、远距离、多元素同时分析等优势,在铁矿石检测领域受到关注。由于激光能量波动、基体效应、样品表面形貌等因素,LIBS在铁矿石定性、定量分析方面存在很多问题。化学计量学作为一种数据处理方法,能过滤噪声和提取有效信息,连接光谱与分析结果,对LIBS分析检测起到关键桥梁作用。近10年LIBS在铁矿石检测中的应用逐渐得到重视,LIBS可应用于鉴别铁矿石酸碱性,也可用于分析铁矿石原产地。针对铁矿石中全铁、钙、镁、硅、铝、钾、磷含量以及烧失量的定量分析,LIBS结合多变量回归已开展探索性工作,但工业应用仍不成熟。因此,如何推动LIBS在铁矿石检测领域的应用落地,仍然是一项重大挑战。  相似文献   

4.
钢铁材料中不同类型夹杂物的存在,破坏了金属基体连续性,使其塑韧性、疲劳及耐腐蚀等物理化学性能变差,生产中会严格控制夹杂物的大小以及总量,因此,夹杂物的评定也成为了钢质量分级的一项重要指标。文章介绍了激光诱导击穿光谱技术对钢中夹杂物表征的基本原理,综述了其在不同类型夹杂物分布、粒度以及含量表征方面的国内外研究进展,讨论了当前表征中存在的不足和难点,并对其发展前景进行了展望。  相似文献   

5.
杜瑶  李茂刚  王萍  冯耀州  张天龙  李华 《冶金分析》2021,40(12):105-111
铁矿石冶炼过程中对其酸度进行准确把控将对铁矿石利用率及冶炼过程产生严重影响。因此,亟需一种铁矿石酸度快速准确分析方法。实验基于激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)技术结合偏最小二乘回归(Partial least squares regression,PLSR)方法成功地提出了一种铁矿石酸度快速定量分析方法。首先,采集了20组铁矿石样品的LIBS光谱数据,并采用美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库对铁矿石的LIBS特征谱线进行标定。然后,采用内参考线自吸收修正(Internal reference for self-absorption correction,IRSAC)和5折交叉验证分别对光谱数据以及PLSR模型潜变量(Latent variables,LVs)进行优化。最后,基于优化后的光谱数据以及LVs构建了PLSR模型用于预测集铁矿石酸度的分析。结果表明,该模型具有较好的预测性能,其预测集决定系数(R2p)为0.9784,均方根误差(RMSEP)为2.916%。说明LIBS结合自吸收修正和PLSR法为铁矿石酸度的快速定量分析提供了一种可行的方法。  相似文献   

6.
激光诱导击穿光谱发展现状   总被引:1,自引:0,他引:1       下载免费PDF全文
激光诱导击穿光谱(LIBS)技术是近年来迅速发展的一种新型分析检测手段,它的发展备受关注。从激光诱导击穿光谱技术的发展、仪器设备的发展、应用技术3个方面进行了综述。其中,在激光诱导击穿光谱技术的发展方面,概述了激光诱导击穿光谱技术的发展历程、技术的改进以及数据处理方法的发展情况。在仪器设备发展方面,介绍了仪器设备在国内外的发展现状,主要介绍了便携式仪器的研究进展。在应用技术方面,介绍了激光诱导击穿光谱技术在各领域中的应用,特别是在工业在线分析领域中的应用。最后对激光诱导击穿光谱技术的未来发展趋势做了展望。  相似文献   

7.
杜瑶  李茂刚  王萍  冯耀州  张天龙  李华 《冶金分析》2020,40(12):105-111
铁矿石冶炼过程中对其酸度进行准确把控将对铁矿石利用率及冶炼过程产生严重影响。因此,亟需一种铁矿石酸度快速准确分析方法。实验基于激光诱导击穿光谱(Laser-induced breakdown spectroscopy,LIBS)技术结合偏最小二乘回归(Partial least squares regression,PLSR)方法成功地提出了一种铁矿石酸度快速定量分析方法。首先,采集了20组铁矿石样品的LIBS光谱数据,并采用美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)数据库对铁矿石的LIBS特征谱线进行标定。然后,采用内参考线自吸收修正(Internal reference for self-absorption correction,IRSAC)和5折交叉验证分别对光谱数据以及PLSR模型潜变量(Latent variables,LVs)进行优化。最后,基于优化后的光谱数据以及LVs构建了PLSR模型用于预测集铁矿石酸度的分析。结果表明,该模型具有较好的预测性能,其预测集决定系数(Rp<...  相似文献   

8.
烧结矿中二氧化硅的含量对高炉炉渣产量以及冶炼能耗有重要影响,因此探索一种能够快速、准确地分析烧结矿中硅元素含量的方法具有重要的研究意义.拟采用激光诱导击穿光谱技术(LIBS)对30个烧结矿实际样品进行快速分析,收集其190~300 nm范围的光谱信号,先建立特征线(Si 288.16 nm)的标准曲线,分析特征线信号强...  相似文献   

9.
使用激光诱导击穿光谱(LIBS)对钢铁样品的扫描分析过程中,MnS夹杂物会引发S和Mn同时出现异常信号,并且信号强度与夹杂物面积之间存在线性关系.应用上述特征并参考德国标准DIN 50602中的检验要求,提出了一个用LIBS进行MnS夹杂物评级的方法.实验方法中,首先要在样品上统计得到的S、Mn元素信号强度与夹杂物面积...  相似文献   

10.
激光诱导击穿光谱技术对钢中缺陷的快速表征   总被引:3,自引:2,他引:1       下载免费PDF全文
激光诱导击穿光谱技术(LIBS)作为一种快速而简单地检查钢表面缺陷的技术,可直接观测到激光脉冲被聚焦于样品之上而感生的等离子体发射物。一个平凸透镜把斑直径大约为1 mm的光量开关Nd:YAG激光器(脉宽:12 ns;重复频率:10 Hz)辐照聚焦于样品表面,用来烧蚀样品的一部分,形成一个微等离子体。等离子体的发射由光纤传送至帕邢-龙校格装置多色仪(焦距:500 mm)。在已被流入和流出的氩气排空的空间里,样品被安装在一个二维移动台上进行两点分析——常规分析和缺陷分析。通过比较两个分析结果,可检测到缺陷部分有显著信号强度的元素。由不同类型的夹杂物可以检测出典型的元素,由氧化铝可检测出铝,由保护渣可检测出铝、钙、镁、硅和钠,由矿渣可检测出铝、钙和镁。经证实,由LIBS分析得到的结果与EPMA(电子探针)研究得到的结果一致。因此,导致缺陷的夹杂物的类型都能通过LIBS技术确定属性。当涂层被激光烧蚀去掉后,镀锌钢也可以被直接分析出来。包括制样,该项技术评定时间不到半小时,因此在炼钢过程中,可以迅速采取合适措施。  相似文献   

11.
将Nd:YAG激光脉冲会聚于合金表面以产生激光诱导等离子体,等离子体辐射发射光经过多通道光栅光谱仪并由CCD检测。分析发射光谱的特征谱线,建立校准曲线以实现铝合金中代表元素Fe,Cu,Si的定量分析。测量相对误差基本可在10%以内,检出限可达10-4量级。证明激光诱导击穿光谱(LIBS)技术可在短时间内实现合金样品中多元素的定量分析。  相似文献   

12.
40年来《冶金分析》聚焦冶金与材料工程的科学技术进步,刊载论文展现了问题导向性、技术引领性、对象多样性、内涵丰富性、学科交融性、论文可参考性等鲜明特色,已成为冶金分析领域最具影响力的专业学术刊物,有力地支撑了冶金与材料工程科技的高质量发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号