共查询到18条相似文献,搜索用时 46 毫秒
1.
赵锋;范淞;赵艳琦;陈谦 《信息网络安全》2025,(5):700-712
可穿戴医疗设备实时产生的医疗数据为健康监测及慢性病管理提供了实时监测与个性化管理的便利。然而,这类医疗数据(如心率、血糖)在应用过程中面临着隐私泄露的风险,尤其是在需要与第三方机构进行数据共享时。因此,如何保护可穿戴医疗设备产生的医疗数据成为亟待解决的问题。文章提出一种基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法。首先,根据原始流数据特点识别出能够有效表示曲线趋势的显著点,将冗余点删除以减少隐私预算的消耗,并根据显著点的时间尺度自适应生成随机噪声。然后,结合Laplace机制为显著点添加随机噪声以保护数据隐私。为了防止攻击者根据噪声显著点中蕴含的统计信息推断原始数据流的隐私信息,在方案中设计卡尔曼滤波机制对冗余点数据进行预测,生成虚拟显著点并实现数据流曲线的重构。基于PAMAP真实数据集的实验表明,在相同隐私预算下,文章方案相比现有可穿戴医疗设备隐私保护方案具有更高数据可用性。 相似文献
2.
本地差分隐私(local differential privacy,LDP)可以对可穿戴装置(wearable devices)采集到的数据进行隐私保护,每个用户都会在本地扰乱自己的数据,并且将扰动后的数据发送给数据汇聚服务器,以保护用户免受私人信息泄漏的影响.可穿戴装置采集到的数据是多维的,但是现有的针对可穿戴装置多... 相似文献
3.
4.
针对现有医疗数据收集算法无法有效抵抗背景知识攻击和不可信第三方的隐私泄露问题,提出一种基于本地差分隐私的医疗数据收集方法.设计基于Count-Min Sketch和GRR算法的两阶段数据收集框架,利用随机采样技术避免隐私预算分割,降低数据收集的通信代价和噪声误差,通过对高低频症状分别抽样扰动收集统计,降低数据哈希冲突导致的误差问题.理论分析算法满足本地差分隐私.实验结果表明,该方法频率估计的精确度、运行时间和通信开销优于对比方法. 相似文献
5.
基于可穿戴设备的移动计算被视为支撑泛在感知型应用的重要技术,它使用大范围部署的传感器持续不断地感知环境信息,利用短距通信和数据挖掘/机器学习技术传递和处理感知数据.现有的可穿戴设备相关工作主要关注新型移动应用、信息采集、产品形态和人性化用户接口等方面的设计与实现.然而,面向可穿戴设备的数据安全隐私保护技术研究尚处于起步阶段.从数据分析者的视角来看,研究者分析可穿戴设备的数据源特点与隐私安全隐患,重点研究基于多源感知数据的个体活动识别方法和数据挖掘机制;从隐私安全保护者的视角来看,面向可穿戴设备的隐私保护技术亟需解决云辅助的隐私保护机制、隐私感知的个人信息发布和基于策略的访问控制等方面的问题.以可穿戴健康跟踪设备Fitbit为对象展开了可穿戴设备安全与隐私实例分析.最后,总结了面向可穿戴设备的隐私保护的8条技术途径,并展望了需要进一步研究的热点问题. 相似文献
6.
针对可穿戴设备流数据可能泄露个人隐私的问题,提出了一种基于自编码器和时频变换的隐私保护数据发布方法.通过分块离散余弦变换将滑动窗口数据变换为频谱数据,再通过自编码器实现脱敏变换,最后由重构的频谱数据逆变换回滑动窗口数据.利用预训练的活动识别与身份识别分类器评估自编码器输出结果的效用性和隐私性,通过多目标损失函数与反向传播更新自编码器权重.在Motion-Sense数据集上的实验结果表明,在重构数据上活动识别的F1-score由0.944降低至0.940,而身份识别的F1-score由0.908降低至0.673,重构加速度数据与原数据之间的均方误差为0.27.与同类算法相比,该算法能够更好地保留数据的效用性以及提高数据的安全性. 相似文献
7.
效用优化本地差分隐私模型能够在保证隐私的前提下提高估计结果准确度.但现有的效用优化本地差分隐私协议存在着数据效用低或通信代价大的问题.本文针对现有效用优化本地差分隐私协议难以兼顾低通信代价和高数据效用的不足,基于OLH (optimized local hashing)协议提出了符合效用优化本地差分隐私模型的uOLH (utility-optimized OLH)协议.该协议在原始数据定义域很大时,同时具有低通信代价和高数据效用的特点,兼顾u RR (utility-optimized randomized response)和uRAP (utilityoptimized randomized aggregatable privacy-preserving ordinal response)二者优势.本文进一步考虑了用户的个性化隐私保护需求,构造了优化加权组合机制DWC (data weighted combination),在此基础上提出了个性化效用优化本地差分隐私协议uOLH-DWC.允许用户自由选择隐私级别,并能够提升估计结果的准确度,可输出多个隐私级别下的频率估计结果.在真实和... 相似文献
8.
移动设备收集用户的地理位置数据用以提供个性化服务,同时也会产生数据泄露的潜在风险。现有地理位置差分隐私保护机制对于不同地理位置隐私保护级别等同对待,效用优化本地差分隐私(ULDP)考虑了对数据加以不同级别的隐私保护,但仅适用于类别型数据的频率估计,在地理位置隐私保护方面没有应用。考虑ULDP机制下的地理位置保护方案,将平方机制进行改造,提出效用优化的平方机制(USM)。该机制对于敏感地理位置满足本地差分隐私,对于非敏感地理位置不作安全性要求以提高整体效用。选取2种不同的真实地理位置数据集,在隐私预算相同的条件下将USM与平方机制进行对比实验,理论分析和实验结果表明USM在效用方面有显著提升。本文同时还展望了本机制进一步优化的可能方向。 相似文献
9.
隐私保护问题已成为信息安全领域研究的重点方向。差分隐私从2006年提出至今一直受到理论界的推崇,而近年来在产业界众包模式下的本地差分隐私受到了极大关注。分析了本地差分隐私模型相对于经典差分隐私模型的演进与应用场景,从理论研究和工程实践角度,对本地差分隐私基础理论及其在数据收集与数据分析中的应用研究进行综述。在数据收集方面,介绍了本地差分隐私的主要研究和应用成果,并着重从差分隐私的角度对这些方法进行了分析比较。在数据分析方面,阐述了本地差分隐私在编码、解码以及在统计学角度的实现和分析方式,并从理论上对这些算法进行推导分析。最后,在对已有技术深入对比分析的基础上,总结出了本地差分隐私技术面临的挑战和研究方向。 相似文献
10.
文中主要围绕差分隐私查询中的均值估计问题展开论述,介绍了目前主流的数值型数据均值估计的本地差分隐私设计方案,首次引入随机响应技术中的随机截尾机制来揭示本地差分隐私下均值计算的基本原理,提出了关于均值估计方差的效用优化定理,给出了边界优化公式,从而提高了该领域效用优化理论的可解释性和可操作性。基于该理论,首次提出了一种实用、简洁、高效的均值估计算法协议RCP,可用于收集和分析连接到互联网的智能设备用户的数据,同时满足本地差分隐私要求。RCP构造简单,支持在任意数量的数值属性上执行数据分析任务,通信与计算高效,有效缓解了现有算法设计复杂、优化困难、效率较低等实际问题。最后,通过实证研究证明了所提方法在效用、效率和渐进误差界限上优于现有的其他方案。 相似文献
11.
大数据时代信息技术不断发展,个人信息的隐私问题越来越受到关注,如何在数据发布和分析的同时保证其中的个人敏感信息不被泄露是当前面临的重大挑战.中心化差分隐私保护技术建立在可信第三方数据收集者的假设基础上,然而该假设在现实中不一定成立.基于此提出的本地化差分隐私作为一种新的隐私保护模型,具有强隐私保护性,不仅可以抵御具有任意背景知识的攻击者,而且能够防止来自不可信第三方的隐私攻击,对敏感信息提供了更全面的保护.介绍了本地化差分隐私的原理与特性,总结和归纳了该技术的当前研究工作,重点阐述了该技术的研究热点:本地化差分隐私下的频数统计、均值统计以及满足本地化差分隐私的扰动机制设计.在对已有技术深入对比分析的基础上,指出了本地化差分隐私保护技术的未来研究挑战. 相似文献
12.
随着大数据驱动下智能技术的快速发展,大规模数据收集场景成为数据治理和隐私保护的主战场,本地化差分隐私技术作为该场景下的主流技术,被谷歌、苹果、微软等企业广泛使用.然而,该技术在用户本地对数据进行扰动,引入较多噪声,数据可用性较差.为实现可用性与隐私性兼顾的隐私保护方法,ESA(encode-shuffle-analyz... 相似文献
13.
近年来,可穿戴设备被广泛地被应用于日常生活。用户量增加造成的可穿戴设备数据重发布是导致隐私泄漏的一个重要原因。为此,数据匿名化重发布方法受到了广泛关注。然而,现有的数据匿名化重发布方法存在两个方面的不足:一方面,现有的数据匿名化重发布算法可能会造成严重的信息损失或用户隐私数据的泄漏;另一方面,现有的数据匿名化重发布算法在兼顾保护用户隐私和减少信息损失的情况下会造成较高的发布成本。为了兼顾隐私安全和数据可用性,并且提高数据重发布算法的效率,结合可穿戴设备自身的特点,提出基于聚类的数据匿名化重发布算法,该算法直接对增量数据进行基于聚类匿名化操作,使数据匿名化重发布更为高效。此外,在数据量较大的应用场景中,基于聚类的数据匿名化重发布算法可以有效减少信息损失。实验结果表明,基于聚类的数据匿名化重发布算法能够在保证用户隐私安全的前提下减少信息的损失并且提高执行效率。 相似文献
14.
基于中心化/本地化差分隐私的直方图发布已得到了研究者的广泛关注.用户的隐私需求与收集者的分析精度之间的矛盾直接制约着直方图发布的可用性.针对现有直方图发布方法难以有效同时兼顾用户隐私与收集者分析精度的不足,提出了一种基于混洗差分隐私的直方图发布算法HP-SDP(histogram publication with shuffled differential privacy).该算法结合本地哈希编码技术所设计的混洗应答机制SRR (shuffled randomized response),能够以线性分解的方式扰动用户数据以及摆脱数据值域大小的影响.结合SRR机制产生的用户消息,设计了一种基于堆排列技术的用户消息均匀随机排列算法MRS (message random shuffling),混洗方利用MRS对所有用户的消息进行随机排列.由于经过MRS混洗后的消息满足中心化差分隐私,使得恶意收集者无法通过消息与用户之间的链接对目标用户进行身份甄别.此外,HP-SDP利用基于二次规划技术的后置处理算法POP(post-processing)对混洗后的直方图进行求精处理. HP-SDP算法与现有... 相似文献
15.
16.
Jaccard Similarity has been widely used to measure the distance between two sets (or preference profiles) owned by two different users. Yet, in the private data collection scenario, it requires the untrusted curator could only estimate an approximately accurate Jaccard similarity of the involved users but without being allowed to access their preference profiles. This paper aims to address the above requirements by considering the local differential privacy model. To achieve this, we initially focused on a particular hash technique, MinHash, which was originally invented to estimate the Jaccard similarity efficiently. We designed the PrivMin algorithm to achieve the perturbation of MinHash signature by adopting Exponential mechanism and build the Locally Differentially Private Jaccard Similarity Estimation (LDP‐JSE ) protocol for allowing the untrusted curator to approximately estimate Jaccard similarity. Theoretical and empirical results demonstrate that the proposed protocol can retain a highly acceptable utility of the estimated similarity as well as preserving privacy. 相似文献
17.
事务数据常见于各种应用场景中,如购物记录、页面浏览历史等.为了提供更好的服务,服务提供商收集用户数据并进行分析,但收集事务数据会泄露用户的隐私信息.为了解决上述问题,基于压缩的本地差分隐私模型,提出一种事务数据收集方法.首先,定义了一种新的候选项集分值函数;其次,基于该函数,将候选项集的样本空间划分为多个子空间;然后,随机选择其中一个子空间,基于该子空间随机生成事务数据并发送给不可信的数据收集者;最后,考虑到隐私参数的设置问题,基于最大后验置信度攻击模型设计启发式隐私参数设置策略.理论分析表明,该方法能够同时保护事务数据的长度与内容,满足压缩的本地差分隐私要求.实验结果表明,与目前最优的工作相比,所收集的数据具有更高的效用性,隐私参数设置更具有语义性. 相似文献
18.
In answer aggregation of crowdsourced data management, rank aggregation aims to combine different agents' answers or preferences over the given alternatives into an aggregate ranking which agrees the most with the preferences. However, since the aggregation procedure relies on a data curator, the privacy within the agents' preference data could be compromised when the curator is untrusted. Existing works that guarantee differential privacy in rank aggregation all assume that the data curator is trusted. In this paper, we formulate and address the problem of locally differentially private rank aggregation, in which the agents have no trust in the data curator. By leveraging the approximate rank aggregation algorithm KwikSort , the Randomized Response mechanism, and the Laplace mechanism, we propose an effective and efficient protocol LDP-KwikSort . Theoretical and empirical results show that the solution LDP-KwikSort:RR can achieve the acceptable trade-off between the utility of aggregate ranking and the privacy protection of agents' pairwise preferences. 相似文献