首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
张逸豪  王振雷 《化工学报》2023,(9):3865-3878
工业过程的众多变量之间往往存在着复杂的相关关系,传统的故障检测模型通常会忽略不同变量间相关性的差异,对不同相关关系的变量采用相同的特征提取方法,从而导致检测效果欠佳。针对以上问题,提出了一种基于最大信息系数的分组支持向量数据描述故障检测模型,首先计算变量间的最大信息系数矩阵,按照相关性的不同对变量进行分组,再通过最大信息系数为模型混合核函数中高斯核与多项式核的权重分配提供理论指导,从而分别为各组建立不同的支持向量数据描述检测模型,完成最大信息系数与支持向量数据描述的紧密结合,最终实现分布式故障检测。通过仿真对比,验证了该模型的可行性与有效性。  相似文献   

2.
小波分析及其在化工过程数据校正中的应用   总被引:8,自引:0,他引:8  
董志军  王世广 《当代化工》2001,20(3):173-176
基于小波分析的数据校正方法具有多尺度特性,可以用于在线或离线校正具有多尺度特征的测量数据或信号,同传统的数据校正方法相比,它具有更优的性能和更广泛的运用范围。本文介绍了近年来国内外在该领域取得的一些研究成果。  相似文献   

3.
Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on improved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Momentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propylene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.  相似文献   

4.
王晓慧  王延江  邓晓刚  张政 《化工学报》2021,72(11):5707-5716
传统支持向量数据描述(SVDD)方法本质上采用浅层学习框架,难以有效监控非线性工业过程的复杂故障。针对此问题,提出一种基于加权深度支持向量数据描述(WDSVDD)的故障检测方法。该方法一方面在深度学习框架下重新定义SVDD优化目标函数,构建基于深度特征的深度SVDD监控模型(DSVDD),并利用核密度估计法计算监控指标的统计控制限;另一方面,考虑到深度特征的故障敏感度差异特性,在DSVDD监控模型中设计特征加权层,分别从静态和动态信息分析角度给出权重因子的计算方法,利用权重因子突出故障敏感特征的影响以提高故障检测率。应用于一个典型化工过程的测试结果表明,所研究的方法能够比传统SVDD方法更有效地监控过程中复杂故障的发生。  相似文献   

5.
王艳芳 《当代化工》2014,(9):1850-1852
计算机技术的快速发展,给化学化工数据的处理带来极大便利。通过机器学习算法,可以总结化学化工实验规律,控制化工生产过程。原有的机器算法虽能为化学化工带来很大便利,但是它本身就存在缺陷。机器学习算法的核心是数学中的渐近理论,这项理论的适用情景是必须有大量的样本,而实际的化学化工工作中样本有限,这就可能导致计算中的过拟合。为了解决这一弊病,我们采用了向量机算法取代原有的机器算法,目前使用支持向量机算法(SVM)建立数学模型已经得到国内外的广泛关注。笔者通过调查化学化工行业中SVM的使用情况,阐述了向量机算法的优势,分析了它在食品检验、化工生产等多项领域的应用。  相似文献   

6.
《化工学报》2010,61(8)
针对传统统计过程监控假设数据服从高斯分布的不足,提出了基于混合信号模型(MSM)及支持向量数据描述(SVDD)的非高斯过程监控方法。混合信号模型中包含了高斯、非高斯信号源及过程测量噪声,给出了基于混合信号模型的过程测量变量分解方法、统计量的定义及其分布。针对非高斯信号源监控,提出了SVDD核参数化的一般形式及其优化算法。工业实际数据中的应用表明,通过SVDD核函数优化,可准确地对数据的非高斯特性进行刻画,及时地发现工业过程中出现的异常情况。  相似文献   

7.
针对燃煤机组选择性催化还原(SCR)系统出口氮氧化物(NOx)预测模型精度不高的问题,提出一种基于最大信息系数(MIC)和长短期记忆(LSTM)神经网络的预测模型方法。首先采用MIC估计各变量的延迟时间,对数据进行时延重构;然后采用重构后数据的MIC值作为评价各输入变量和输出变量间相关性大小的指标,并结合基于关联性的特征选择算法(CFS)进行输入变量筛选;最后基于时延重构和变量筛选后的数据,采用LSTM神经网络建立了SCR出口氮氧化物浓度动态预测模型。该模型被用于广东某320 MW燃煤机组实际运行数据分析。结果表明,经时延重构和变量筛选后所建立的LSTM预测模型具有较高精度,优于深度神经网络(DNN)模型和径向基函数(RBF)神经网络模型,平均绝对百分比误差达2.58%,均方根误差达2.02,可满足现场运用要求。  相似文献   

8.
从建立潜变量自回归(AR)模型的角度出发,提出了一种基于潜变量自回归(LVAR)算法的化工过程动态建模与监测方法,旨在提取动态潜变量的同时给出各潜变量的AR模型。LVAR算法在最小化潜变量的AR模型残差的约束下,通过同时搜寻投影变换向量与AR系数向量,实现了对动态潜变量的特征提取及其AR模型的建立。此外,LVAR算法通过先提取动态潜变量后提取静态成分信息的方式,有效地区分了采样数据中的自相关性与交叉相关性。在对比实验中,通过比较分析LVAR方法与其他三种典型的动态过程监测方法在经典化工过程对象上的故障监测结果,验证了LVAR方法在动态过程监测上的优越性与可靠性。  相似文献   

9.
针对工业数据非线性、时变性、时空特征耦合的特点,提出一种基于最大信息系数和残差图卷积网络的工业过程故障诊断算法(MIC-RGCN)。引入最大信息系数(MIC)挖掘变量之间的相关关系,将高维变量之间的相关信息转换为空间距离信息,构建相关性矩阵作为图卷积层的邻接矩阵输入;构建改进的深度残差图卷积网络(GCN)模型对数据的时空特征进行深度融合提取并精准分类。在田纳西-伊斯曼过程和三相流过程数据集上将该算法与4种典型机器学习和深度学习算法进行对比测试。实验结果表明,该算法有效地提升了故障诊断的准确率。  相似文献   

10.
刘宗其  杜文莉  祁荣宾  钱锋 《化工学报》2010,61(11):2889-2895
针对化工以及生化过程的动态优化问题,提出了一种基于改进知识引导的文化算法。该算法首先对控制搜索域与时间域分别进行了等分和离散化,利用软约束思想编码控制序列,采用种群产生-控制域进化-种群寻优迭代过程实现对控制序列的逐步寻优;其次在种群空间采用遗传算法,在信度空间采用差分算法,并将进化过程中的已有种群信息设计为3种知识,通过分析知识、提取知识、管理知识来指导进化过程。由于引入了文化进化理念和机制,大大提高了动态优化问题的搜索效率。通过3种典型化工动态优化问题的仿真实例,表明该算法具有较好的寻优效率以及更好的优化结果,验证了该算法在解决具有非线性动态约束问题的有效性。  相似文献   

11.
李灵  王雅琳  孙备 《化工学报》2020,71(5):2173-2181
变量筛选是现代工业过程产品质量预测研究中的热点问题之一。过滤式变量选择方法因其计算速度快且不易造成过拟合得到了广泛应用,但其存在容易忽略变量相关性且不能准确反映工况信息的问题,在高维数据维度灾难问题日渐突出的当今不再适用。针对这一问题,提出一种分步约简的敏感变量选择方法。该方法在明确敏感变量和关键敏感变量的基础上,根据变量对工况的描述能力和辅助变量与主导变量的净相关性定义了敏感性指标,实现敏感变量的初选;接着,构建加权余弦马田系统以解决变量冗余性问题,实现敏感变量的精选。所提方法应用于加氢裂化产品质量预测,实际工业应用结果表明,该方法不仅可以提高模型的预测精度,而且可以有效地降低模型复杂性。  相似文献   

12.
近些年,大数据技术在金融、贸易和医疗健康等行业也得到了较好的应用,但大数据技术在过程工业中的应用还处于起步阶段。本文分别从过程工业大数据的特点、分析方法以及应用现状3个方面进行介绍,简述了过程工业数据除了具有一般大数据海量性、多样性、高速性和易变性的4V特点外,还具有高维度、强非线性、样本分布不均和低信噪比的特点。基于过程工业数据的分析方法,按照功能划分可以分为降维分析、聚类和分类分析、相关性分析和预测分析四大类。在此基础上,综述了近些年大数据技术在过程工业上的应用,分别从过程工业优化、过程监测与故障诊断以及产品性能和产率预测3个方面介绍了其在过程工业中的应用情况,并指出未来应该将企业内部的生产数据和原料与产品的市场数据等相结合进行分析和挖掘,这样能够更大程度地发挥大数据的价值。  相似文献   

13.
王琨  侍洪波  谭帅  宋冰  陶阳 《化工学报》2022,73(7):3109-3119
传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据中包含的信息,从而影响检测效果。因此,提出一种局部时差约束邻域保持嵌入(local time difference constrained neighborhood preserving embedding,LTDCNPE)算法,充分考虑样本间的时间和空间关系,从而建立准确的故障检测模型。首先,该算法在固定尺度的时间窗内,根据样本的时序关系和空间特征挑选出邻域。其次,利用样本间的时间差异为邻域样本进行加权,使数据特征保留了高维空间的局部结构。然后,对降维后得到的主元空间和残差空间构建T2和SPE统计量并确定控制限。最后,通过数值例子和Tennessee-Eastman(TE)过程仿真验证LTDCNPE算法的有效性。  相似文献   

14.
Soft sensors have been used in industrial plants to estimate process variables that are difficult to measure online. Soft sensor models predicting an objective variable should be constructed with only important explanatory variables in terms of predictive ability, better interpretation of models and lower measurement costs. Besides, some process variables can affect an objective variable with time‐delays. Therefore, we have proposed the methods for selecting important process variables and optimal time‐delays of each variable simultaneously, by modifying the genetic algorithm‐based wavelength selection method that is one of the wavelength selection methods in spectrum analysis. The proposed methods can select time‐regions of process variables as a unit by using process data that includes process variables that are delayed in the range from zero to a set/given maximum value. The case study with simulation data and real industrial data confirmed that predictive, easy‐to‐interpret, and appropriate models were constructed using the proposed methods. © 2012 American Institute of Chemical Engineers AIChE J, 58: 1829–1840, 2012  相似文献   

15.
The presence of measurement bias and random noise significantly deteriorates the information quality of plant data. Data reconciliation techniques for steady-state processes have been widely applied to processing industries to improve the accuracy and precision of the raw measurements. This paper develops an algorithm for simultaneous bias correction and data reconciliation for dynamic processes. The algorithm considers process model error as an important contributing factor in the estimation of the measurement bias and process state variables. It employs black-box models for the process as would be done when phenomenological models are difficult or impractical to obtain. Simulation results of a distillation column demonstrated that this algorithm effectively compensates constant and non-constant measurement biases yielding much improved reconciled values of process variables. It has computational advantages over previously proposed algorithms based on non-linear dynamic data reconciliation because an analytical solution is available when using linear process models to approximate the process.  相似文献   

16.
褚菲  程相  代伟  赵旭  王福利 《化工学报》2018,69(6):2567-2575
提出了一种基于过程迁移的间歇过程质量预报方法,旨在解决新间歇过程数据不足难以建立准确预报模型的问题。该方法基于多元统计回归分析模型,通过构建相似间歇过程间的共同潜变量空间,将已有相似间歇过程的数据信息迁移应用到未建模的新间歇过程中,实现新间歇过程的快速建模和质量预报。在线应用时,利用在线数据不断更新过程迁移模型;同时,实时估计模型预测误差的置信区间,判断预报模型预测误差的稳定性;为克服相似过程间可能存在的差异给迁移模型带来的不利影响,根据数据相似度逐步剔除相似间歇过程数据。最后,通过仿真实验验证了所提方法的有效性。  相似文献   

17.
催化裂化过程是重质油轻质化的重要手段,为了研究操作条件、原料性质等因素对产品分布的影响,通常需要对催化裂化过程建立准确可靠的数学模型。选择合适的输入变量对模型预测效果有着较大的影响,而在现有的催化裂化装置模型中,输入变量的选取主要依赖于对催化裂化机理的理解。本文从数据驱动建模的角度出发,提出一种Filter法与Wrapper法联合使用的特征子集选择方法。该方法在输入变量选取的过程中不依赖于催化裂化的先验知识,是一种数据驱动的自发的特征变量选择过程。以某炼油厂催化裂化装置为研究对象,利用该装置的生产数据分别选择用于干气和焦炭产率预测模型的输入变量,建立了预测精度高、输入变量数目适中的模型。此外,该方法为催化裂化装置建模的变量选取提供了新角度。  相似文献   

18.
    
Large-scale industrial data have brought great challenges to data calculation and analysis. Feature extraction and selection have become one of the research emphases in data mining. To mine the dynamic characteristics of large-scale industrial data, a dynamic global feature extraction (DGFE) method integrating principal component analysis (PCA) and kernel principal component analysis (KPCA) is proposed such that the achieved feature set is not only dynamic but also contains linear and non-linear features. To ensure that the obtained feature set is optimal with the minimum redundancy, a new importance-correlation-based feature selection (ICFS) method is proposed. To verify the validity and feasibility of the proposed methods, the partial least square (PLS) and least square support vector machine (LSSVM) prediction models for the concentrate copper grade and the recovery rate are established. The effectiveness of the proposed methods is verified through data experiments on a copper flotation industrial process.  相似文献   

19.
A genetic neural fuzzy system (GNFS) is presented and introduced to quality prediction in the injection process. A hybrid-learning algorithm is proposed, which is divided into two stages to train GNFS. During the first learning stage, the genetic algorithm is used to optimize the structure of GNFS and the membership function of each fuzzy term because of its capability of parallel and global search. On the basis of the first optimized training stages, the back-propagation algorithm (BP algorithm) is adopted to update the parameters of the GNFS to improve its predicting precision and reduce the computation time. The process of constructing a quality prediction model for an injection process based on GNFS is described in detail. The predicted weight of the molded part from the model based on GNFS demonstrates that the proposed GNFS has superior performance and good generalization capability in quality prediction in the injection process.  相似文献   

20.
A genetic neural fuzzy system (GNFS) is presented and introduced to quality prediction in the injection process. A hybrid-learning algorithm is proposed, which is divided into two stages to train GNFS. During the first learning stage, the genetic algorithm is used to optimize the structure of GNFS and the membership function of each fuzzy term because of its capability of parallel and global search. On the basis of the first optimized training stages, the back-propagation algorithm (BP algorithm) is adopted to update the parameters of the GNFS to improve its predicting precision and reduce the computation time. The process of constructing a quality prediction model for an injection process based on GNFS is described in detail. The predicted weight of the molded part from the model based on GNFS demonstrates that the proposed GNFS has superior performance and good generalization capability in quality prediction in the injection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号