共查询到19条相似文献,搜索用时 203 毫秒
1.
工业过程的众多变量之间往往存在着复杂的相关关系,传统的故障检测模型通常会忽略不同变量间相关性的差异,对不同相关关系的变量采用相同的特征提取方法,从而导致检测效果欠佳。针对以上问题,提出了一种基于最大信息系数的分组支持向量数据描述故障检测模型,首先计算变量间的最大信息系数矩阵,按照相关性的不同对变量进行分组,再通过最大信息系数为模型混合核函数中高斯核与多项式核的权重分配提供理论指导,从而分别为各组建立不同的支持向量数据描述检测模型,完成最大信息系数与支持向量数据描述的紧密结合,最终实现分布式故障检测。通过仿真对比,验证了该模型的可行性与有效性。 相似文献
2.
小波分析及其在化工过程数据校正中的应用 总被引:8,自引:0,他引:8
基于小波分析的数据校正方法具有多尺度特性,可以用于在线或离线校正具有多尺度特征的测量数据或信号,同传统的数据校正方法相比,它具有更优的性能和更广泛的运用范围。本文介绍了近年来国内外在该领域取得的一些研究成果。 相似文献
3.
输入训练神经网络的维数约简算法及其在化工过程建模中的应用 总被引:1,自引:0,他引:1
Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on improved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Momentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propylene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling. 相似文献
4.
传统支持向量数据描述(SVDD)方法本质上采用浅层学习框架,难以有效监控非线性工业过程的复杂故障。针对此问题,提出一种基于加权深度支持向量数据描述(WDSVDD)的故障检测方法。该方法一方面在深度学习框架下重新定义SVDD优化目标函数,构建基于深度特征的深度SVDD监控模型(DSVDD),并利用核密度估计法计算监控指标的统计控制限;另一方面,考虑到深度特征的故障敏感度差异特性,在DSVDD监控模型中设计特征加权层,分别从静态和动态信息分析角度给出权重因子的计算方法,利用权重因子突出故障敏感特征的影响以提高故障检测率。应用于一个典型化工过程的测试结果表明,所研究的方法能够比传统SVDD方法更有效地监控过程中复杂故障的发生。 相似文献
5.
计算机技术的快速发展,给化学化工数据的处理带来极大便利。通过机器学习算法,可以总结化学化工实验规律,控制化工生产过程。原有的机器算法虽能为化学化工带来很大便利,但是它本身就存在缺陷。机器学习算法的核心是数学中的渐近理论,这项理论的适用情景是必须有大量的样本,而实际的化学化工工作中样本有限,这就可能导致计算中的过拟合。为了解决这一弊病,我们采用了向量机算法取代原有的机器算法,目前使用支持向量机算法(SVM)建立数学模型已经得到国内外的广泛关注。笔者通过调查化学化工行业中SVM的使用情况,阐述了向量机算法的优势,分析了它在食品检验、化工生产等多项领域的应用。 相似文献
6.
7.
针对燃煤机组选择性催化还原(SCR)系统出口氮氧化物(NOx)预测模型精度不高的问题,提出一种基于最大信息系数(MIC)和长短期记忆(LSTM)神经网络的预测模型方法。首先采用MIC估计各变量的延迟时间,对数据进行时延重构;然后采用重构后数据的MIC值作为评价各输入变量和输出变量间相关性大小的指标,并结合基于关联性的特征选择算法(CFS)进行输入变量筛选;最后基于时延重构和变量筛选后的数据,采用LSTM神经网络建立了SCR出口氮氧化物浓度动态预测模型。该模型被用于广东某320 MW燃煤机组实际运行数据分析。结果表明,经时延重构和变量筛选后所建立的LSTM预测模型具有较高精度,优于深度神经网络(DNN)模型和径向基函数(RBF)神经网络模型,平均绝对百分比误差达2.58%,均方根误差达2.02,可满足现场运用要求。 相似文献
8.
从建立潜变量自回归(AR)模型的角度出发,提出了一种基于潜变量自回归(LVAR)算法的化工过程动态建模与监测方法,旨在提取动态潜变量的同时给出各潜变量的AR模型。LVAR算法在最小化潜变量的AR模型残差的约束下,通过同时搜寻投影变换向量与AR系数向量,实现了对动态潜变量的特征提取及其AR模型的建立。此外,LVAR算法通过先提取动态潜变量后提取静态成分信息的方式,有效地区分了采样数据中的自相关性与交叉相关性。在对比实验中,通过比较分析LVAR方法与其他三种典型的动态过程监测方法在经典化工过程对象上的故障监测结果,验证了LVAR方法在动态过程监测上的优越性与可靠性。 相似文献
9.
针对工业数据非线性、时变性、时空特征耦合的特点,提出一种基于最大信息系数和残差图卷积网络的工业过程故障诊断算法(MIC-RGCN)。引入最大信息系数(MIC)挖掘变量之间的相关关系,将高维变量之间的相关信息转换为空间距离信息,构建相关性矩阵作为图卷积层的邻接矩阵输入;构建改进的深度残差图卷积网络(GCN)模型对数据的时空特征进行深度融合提取并精准分类。在田纳西-伊斯曼过程和三相流过程数据集上将该算法与4种典型机器学习和深度学习算法进行对比测试。实验结果表明,该算法有效地提升了故障诊断的准确率。 相似文献
10.
针对化工以及生化过程的动态优化问题,提出了一种基于改进知识引导的文化算法。该算法首先对控制搜索域与时间域分别进行了等分和离散化,利用软约束思想编码控制序列,采用种群产生-控制域进化-种群寻优迭代过程实现对控制序列的逐步寻优;其次在种群空间采用遗传算法,在信度空间采用差分算法,并将进化过程中的已有种群信息设计为3种知识,通过分析知识、提取知识、管理知识来指导进化过程。由于引入了文化进化理念和机制,大大提高了动态优化问题的搜索效率。通过3种典型化工动态优化问题的仿真实例,表明该算法具有较好的寻优效率以及更好的优化结果,验证了该算法在解决具有非线性动态约束问题的有效性。 相似文献
11.
多尺度小波核支持向量回归方法具有较强的鲁棒性和较好的泛化能力,而模型选择是其获得良好泛化性能的关键,其中采用多尺度核方法参数选择的复杂度比单个核方法的参数选择大得多。这里提出了一种构造多尺度Morlet小波核的支持向量回归机的方法,它采用量子聚类方法划分样本类别以确定多尺度核的尺度个数,依赖支持向量数据描述方法对相应样本计算其核宽度,然后用文化算法优化剩下的少量模型参数。结果表明所得到的多尺度小波核模型的泛化能力明显优于单小波核或高斯核情形。分别用3个标准回归数据集Bostonhous-ing、Bodyfat和Santa作仿真,结果表明,相对于高斯核方法,多尺度小波核支持向量回归方法的测试集均方差分别减小了6.8%、62.0%和91.3%。同时,该方法对丙烯精馏塔的塔釜丙烯浓度预估表现出较好的泛化能力。它不仅使丙烯浓度训练集模型输出与实际输出基本吻合,而且使丙烯浓度测试集相对误差为0.211,与其他方法相比,其预测误差是最小的。 相似文献
12.
13.
复杂化工过程的观测样本往往包含着测量噪声与少量的离群点数据,而这些受污染的数据会影响数据驱动的过程建模与故障检测方法的准确性。本文考虑了化工过程测量样本的这一实际情况,提出了一种鲁棒半监督PLVR模型(RSSPLVR),并利用核方法将其扩展为非线性的形式(K-RSSPLVR)。此类算法利用基于样本相似度的加权系数作为概率模型的先验参数,能有效消除离群点对建模的影响。利用加权后的建模样本,本文通过EM算法训练了RSSPLVR和K-RSSPLVR的模型参数,并提出了相应的故障检测算法。最后,通过TE过程仿真实验验证了所提出方法的有效性。 相似文献
14.
提出一种基于稀疏核学习辨识模型的单步预测控制(sparse kernel learning one-step-ahead predictive control,SKL-OPC)框架,并推导了该框架下采用多项式核的一种控制算法。该算法在求取最优控制律时可将调节变量从目标函数分离出来,并最终转化为求解一奇数次代数方程根的问题。因此无需复杂的非线性优化技术,且克服了基于二次多项式核辨识模型不准确造成控制算法失效的缺点。在一非线性连续搅拌反应釜的控制研究表明了该方法的有效性和优越性。 相似文献
15.
16.
针对传统多模型软测量方法在面对复杂、多变工况时缺少在线更新机制、更新时输出精度降低等问题,提出了一种基于即时学习算法(JIT)的多模型在线软测量方法(MOSVR)。离线阶段首先采用模糊C均值聚类(FCM)对训练数据进行聚类,接着采用SVR建立初始模型集。在线部分以多模型输出作为主要输出,当出现新工况时,通过在线模型更新策略(OSMU)将输出模式切换为JIT,同时多模型集进行在线更新。该方法不仅拥有多模型输出的快速性、精确性,而且在模型更新时通过JIT模式还能保证输出的连续性、稳定性、精确性。最后将该软测量方法进行了数值仿真并运用到乙烷浓度软测量中,验证了该方法的有效性。 相似文献
17.
18.
典型变量差异度分析(CVDA)是近年来提出的一种新型动态过程监控方法,已在微小故障检测领域获得成功应用。针对传统CVDA方法忽视了特征量的概率信息挖掘问题,提出一种基于加权概率CVDA(WPCVDA)的动态化工系统微小故障检测方法。一方面,该方法在基本CVDA模型特征基础上引入Wasserstein距离(WD)度量特征量概率分布的变化,构造概率化的WD特征提高CVDA模型对微小故障的灵敏度;另一方面,进一步考虑不同的WD特征成分携带故障信息的差异性,设计一种自适应权值计算策略,为关键的故障敏感特征成分设置大的权值,突出其在监控统计量中的作用。在一个标准化工过程的验证结果说明,所提出的WPCVDA方法比传统CVDA方法具有更好的微小故障检测性能。 相似文献
19.
A large amount of information is frequently encountered when characterizing the sample model in chemical process. A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper. From the whole process point of view, the method makes use of the characteristic of mutual information to select the optimal variable subset. It extracts the correlation among variables in the whitening process without limiting to only linear correlations. Further, PCA (Principal Component Analysis) dimension reduction is used to extract feature subset before fault diagnosis. The application results of the TE (Tennessee Eastman) simulation process show that the dynamic modeling process of MIFE (Mutual Information Feature Engineering) can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring. 相似文献