首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于卷积神经网络在图像特征表示方面的良好表现,以及深度哈希可以满足大规模图像检索对检索时间的要求,提出了一种结合卷积神经网络和深度哈希的图像检索方法.针对当前典型图像检索方法仅仅使用全连接层作为图像特征进行检索时,存在有些样本的检索准确率为零的问题,提出融合神经网络不同层的信息作为图像的特征表示;针对直接使用图像特征进行检索时响应时间过长的问题,使用深度哈希的方法将图像特征映射为二进制的哈希码,这样哈希码中既包含底层的边缘信息又包含高层的语义信息;同时,提出了一种相似性度量函数进行相似性匹配.实验结果表明,与已有的图像检索方法相比,该方法在检索准确率上有一定程度的提高.  相似文献   

2.
基于多尺度密集网络的肺结节图像检索算法   总被引:1,自引:0,他引:1  
现有基于内容的医学图像检索(CBMIR)算法存在特征提取的不足,导致图像的语义信息表达不完善、图像检索性能较差,为此提出一种多尺度密集网络算法以提高检索精度。首先,将512×512的肺结节图像降维到64×64,同时加入密集模块以解决提取的低层特征和高层语义特征之间的差距;其次,由于网络的不同层提取的肺结节图像信息不同,为了提高检索精度和效率,采用多尺度方法结合图像的全局特征和结节局部特征生成检索哈希码。实验结果分析表明,与自适应比特位的检索(ABR)算法相比,提出的算法在64位哈希码编码长度下的肺结节图像检索查准率可以达到91.17%,提高了3.5个百分点;检索一张肺切片需要平均时间为48 μs。所提算法的检索结果在表达图像丰富的语义特征和检索效率方面,优于其他对比的网络结构,适用于为医生临床辅助诊断提供依据、帮助患者有效治疗。  相似文献   

3.
4.
基于高维肺部计算机断层扫描(CT)图像的肺结节检测是一项极具挑战性的任务。在诸多肺结节检测算法中,深度卷积神经网络(CNN)最引人注目,其中二维(2D) CNN具有预训练模型多、检测效率高等优点,应用非常广泛,但肺结节本质是三维(3D)病灶,2D CNN会不可避免地造成信息损失,从而影响检测精度。3D CNN能充分利用CT图像空间信息,有效提升检测精度,但是3D CNN存在参数多、计算消耗大、过拟合风险高等不足。为了兼顾两者的优势,提出基于深度混合CNN的肺结节检测模型,通过在神经网络模型的浅层部署3D CNN,在模型的深层部署2D CNN,并增加反卷积模块,融合了多层级的图像特征,达到了在不损失检测精度的情况下减少模型参数、增强模型泛化能力,提高检测效率的目的。在LUNA16数据集上的实验结果表明,所提出的模型在平均每次扫描8个假阳性的情况下的敏感度为0.924,优于现有的先进模型。  相似文献   

5.
基于高维肺部计算机断层扫描(CT)图像的肺结节检测是一项极具挑战性的任务。在诸多肺结节检测算法中,深度卷积神经网络(CNN)最引人注目,其中二维(2D) CNN具有预训练模型多、检测效率高等优点,应用非常广泛,但肺结节本质是三维(3D)病灶,2D CNN会不可避免地造成信息损失,从而影响检测精度。3D CNN能充分利用CT图像空间信息,有效提升检测精度,但是3D CNN存在参数多、计算消耗大、过拟合风险高等不足。为了兼顾两者的优势,提出基于深度混合CNN的肺结节检测模型,通过在神经网络模型的浅层部署3D CNN,在模型的深层部署2D CNN,并增加反卷积模块,融合了多层级的图像特征,达到了在不损失检测精度的情况下减少模型参数、增强模型泛化能力,提高检测效率的目的。在LUNA16数据集上的实验结果表明,所提出的模型在平均每次扫描8个假阳性的情况下的敏感度为0.924,优于现有的先进模型。  相似文献   

6.
为了充分挖掘服装图像从全局到局部的多级尺度特征,同时发挥深度学习与传统特征各自在提取服装图像深层语义特征和底层特征上的优势,从而实现聚焦服装本身与服装全面特征的提取,提出基于多特征融合的多尺度服装图像精准化检索算法.首先,为了不同类型特征的有效融合,本文设计了基于特征相似性的融合公式FSF(Feature Similarity Fusion).其次,基于YOLOv3模型同时提取服装全局、主体和款式部件区域构成三级尺度图像,极大减弱背景等干扰因素的影响,聚焦服装本身.之后全局、主体和款式部件三级尺度图像分别送入三路卷积神经网络(Convolutional Neural Network,CNN)进行特征提取,每路CNN均依次进行过服装款式属性分类训练和度量学习训练,分别提高了CNN对服装款式属性特征的提取能力,以及对不同服装图像特征的辨识能力.提取的三路CNN特征使用FSF公式进行特征融合,得到的多尺度CNN融合特征则包含了服装图像从全局到主体,再到款式部件的全面特征.然后,加入款式属性预测优化特征间欧氏距离,同时抑制语义漂移,得到初步检索结果.最后,由于底层特征可以很好的对CNN提取的深层语义特征进行补充,故引入传统特征对初步检索结果的纹理、颜色等特征进行约束,通过FSF公式将多尺度CNN融合特征与传统特征相结合,进一步优化初步检索结果的排序.实验结果表明,该算法可以实现对服装从全局到款式部件区域多尺度CNN特征的充分提取,同时结合传统特征有效优化排序结果,提升检索准确率.在返回Top-20的实验中,相比于FashionNet模型准确率提升了16.4%."  相似文献   

7.
针对CT图像肺结节分类任务中分类精度低,假阳性高的问题,提出了一种加权融合多维度卷积神经网络的肺结节分类模型,该模型包含两个子模型:基于二维图像的多尺度密集卷积网络模型,以捕获更宽泛的结节变化特征并促进特征重用;基于三维图像的三维卷积神经网络模型,以充分利用结节空间上下文信息。使用二维和三维CT图像训练子模型,根据子模型分类误差计算其权重,对子模型分类结果进行加权融合,得到最终分类结果。该模型在公共数据集LIDC-IDRI上分类准确率达到94.25%,AUC值达到98%。实验结果表明,加权融合多维度模型可以有效地提升肺结节分类性能。  相似文献   

8.
朱杰  张俊三  吴树芳  董宇坤  吕琳 《计算机应用》2018,38(10):2778-2781
深度卷积特征能够为图像内容描述提供丰富的语义信息,为了在图像表示中突出对象内容,结合激活映射中较大响应值与对象区域的关系,提出基于多中心卷积特征加权的图像表示方法。首先,通过预训练深度模型提取出图像卷积特征;其次,通过不同通道特征映射求和得到激活映射,并将激活映射中有较大响应值的位置认为是对象的中心;再次,将中心数量作为尺度,结合激活映射中不同位置与中心的距离为对应位置的描述子加权;最后,合并不同中心数量下的图像特征,生成图像表示用于图像检索。与池化卷积(SPoC)算法和跨维度(CroW)算法相比,所提方法能够为图像表示提供尺度信息的同时突出对象内容,并在Holiday、Oxford和Paris图像集中取得了良好的检索结果。  相似文献   

9.
多媒体技术的发展导致数字图像迅速增长,如何根据语义特征高效检索出满足用户要求的图像,已成为当前各行业迫切需要解决的问题。为此提出一种基于颜色、纹理和形状三种语义特征的图像检索方法,建立了颜色和纹理特征的语义描述,使用BP神经网络实现了低层视觉特征到高层语义特征的映射。选取Corel图像库作为测试图像库,实验通过与基于颜色语义特征的检索方法相比较,取得了良好的实验效果。  相似文献   

10.
新时期如何提升基于内容的图像检索精准度,成为图像检索领域需要思考和解决的问题。提升基于内容的图像检索精准度的关键是量化处理彩色图像,应用彩色共生矩阵提取图像纹理特点,计算图像之间的欧式距离,利用加权的颜色和纹理特征检索图像,满足用户的使用需求。为此,将基于特征融合的图像检索作为基本研究对象,分析基于特征融合的图像检索方法应用面临的问题和优化对策,旨在提升图像检索精度。  相似文献   

11.
于邓  刘玉杰  邢敏敏  李宗民  李华 《软件学报》2019,30(11):3567-3577
在手绘草图检索(sketch-based image retrieval,简称SBIR)领域,引入一种手绘草图的新型检索模型.手绘草图与自然图片之间存在巨大的差异性,这是因为,与自然图片相比,手绘草图展现出高度抽象的视觉表达,用现有的方法对手绘草图进行特征提取,其产生的特征描述子对于手绘草图的内容无法进行有效地拟合;对于相同的物体,不同的人群用手绘草图描述方式和表达也存在巨大的差距,这就使得手绘草图-自然图片的匹配更加困难;同时,将手绘草图与自然图片映射到相同视觉域的工作,也是一项具有困难的任务.所以,手绘草图检索技术是公认的比较有挑战性的任务.提出一种将手绘草图与自然图片在多个层次上映射到同一视觉域的策略来解决跨域的问题.同时,引入多层深度融合卷积神经网络(multi-layer deep fusion convolutional neural network)的框架来训练并获得手绘草图和自然彩色图片的多层特征表达.在Flickr15k图像数据库进行检索实验,实验结果显示,多层深度融合卷积网络学习到的特征的检索精度超过了现有的手工特征以及由自然图片或者手绘草图训练出来的卷积神经网络(convolutional neural network,简称CNN)的特征.  相似文献   

12.
草图检索(SBIR)是基于内容的图像检索(CBIR)的扩展,是一种灵活便捷的目标图像检索方式,其研究的焦点是如何减少手绘草图域与自然图像域之间的域差。传统方法提取手工特征完成草图域与图像域之间的近似转换以减少域差,但该类方法无法有效拟合2个域内容,导致检索精度不高。深度学习方法依赖大量数据进行图像高维特征的提取,突破了传统方法的局限,已被证明可以有效解决跨域建模问题。研究聚焦于基于深度学习的草图检索方法,在深度特征提取模型、公开的数据测试集、粗粒度和细粒度检索、哈希技术和类别泛化等几个方面对草图检索的深度学习方法的相关研究工作进行了综述和评论。然后进行了实验比较研究,一方面,对现有3个公开的SBIR测试集Sketchy、TU-Berlin和QuickDraw进行适用性评估;另一方面,选取3个最新的SBIR深度学习模型GRLZS模型、SEM-PCYC模型和SAKE模型进行性能分析与比较。最后,对草图检索面临的挑战和未来研究方向进行了总结与展望。  相似文献   

13.
大场景下的激光(Lidar)点云数据分类是一个复杂的问题任务,有时需要多种技术的结合,以获得所需的结果.我们提出了一种基于多维特征矩阵和PointNet的深度神经网络模型.实现了大场景点云下的激光Lidar点云分类工作.文章先将提取点云的三维和二维邻域特征,再将特征进行融合转换为特征矩阵,将局部特征矩阵输入到Point...  相似文献   

14.
基于深度学习的图像检索系统   总被引:2,自引:0,他引:2       下载免费PDF全文
基于内容的图像检索系统关键的技术是有效图像特征的获取和相似度匹配策略.在过去,基于内容的图像检索系统主要使用低级的可视化特征,无法得到满意的检索结果,所以尽管在基于内容的图像检索上花费了很大的努力,但是基于内容的图像检索依旧是计算机视觉领域中的一个挑战.在基于内容的图像检索系统中,存在的最大的问题是“语义鸿沟”,即机器从低级的可视化特征得到的相似性和人从高级的语义特征得到的相似性之间的不同.传统的基于内容的图像检索系统,只是在低级的可视化特征上学习图像的特征,无法有效的解决“语义鸿沟”.近些年,深度学习技术的快速发展给我们提供了希望.深度学习源于人工神经网络的研究,深度学习通过组合低级的特征形成更加抽象的高层表示属性类别或者特征,以发现数据的分布规律,这是其他算法无法实现的.受深度学习在计算机视觉、语音识别、自然语言处理、图像与视频分析、多媒体等诸多领域取得巨大成功的启发,本文将深度学习技术用于基于内容的图像检索,以解决基于内容的图像检索系统中的“语义鸿沟”问题.  相似文献   

15.
机器学习中一个非常关键的问题就是如何获取良好的数据特征表示,许多经典的特征提取方法是基于数据间关系或利用简单线性组合降维后得到数据的特征表示。其中深度学习算法在各种学习任务中都可以取得良好的效果,而且可以学到很好的数据特征表示。但现有深度学习算法或模型大多为单机串行实现,不能处理较大规模的数据且运行时间较长。本文设计实现了一种基于Spark分布式平台的高效并行自动编码机,该编码机可以有效地进行特征表示学习,并且利用分布式计算平台Spark对 算法进行加速,优化了对稀疏数据的操作,大大提升了运行效率。本文通过在文本数据特征学习以及协同过滤两个任务上的实验,表明本文所实现的并行自动编码机的有效性和高效性。  相似文献   

16.
基于深度卷积神经网络的图像检索算法研究   总被引:2,自引:0,他引:2  
为解决卷积神经网络在提取图像特征时所造成的特征信息损失,提高图像检索的准确率,提出了一种基于改进卷积神经网络LeNet-L的图像检索算法。首先,改进LeNet-5卷积神经网络结构,增加网络结构深度。然后,对深度卷积神经网络模型LeNet-L进行预训练,得到训练好的网络模型,进而提取出图像高层语义特征。最后,通过距离函数比较待检图像与图像库的相似度,得出相似图像。在Corel数据集上,与原模型以及传统的SVM主动学习图像检索方法相比,该图像检索方法有较高的准确性。经实验结果表明,改进后的卷积神经网络具有更好的检索效果。  相似文献   

17.
目的 基于深度学习的图像哈希检索是图像检索领域的热点研究问题。现有的深度哈希方法忽略了深度图像特征在深度哈希函数训练中的指导作用,并且由于采用松弛优化,不能有效处理二进制量化误差较大导致的生成次优哈希码的问题。对此,提出一种自监督的深度离散哈希方法(self-supervised deep discrete hashing,SSDDH)。方法 利用卷积神经网络提取的深度特征矩阵和图像标签矩阵,计算得到二进制哈希码并作为自监督信息指导深度哈希函数的训练。构造成对损失函数,同时保持连续哈希码之间相似性以及连续哈希码与二进制哈希码之间的相似性,并利用离散优化算法求解得到哈希码,有效降低二进制量化误差。结果 将本文方法在3个公共数据集上进行测试,并与其他哈希算法进行实验对比。在CIFAR-10、NUS-WIDE(web image dataset from National University of Singapore)和Flickr数据集上,本文方法的检索精度均为最高,本文方法的准确率比次优算法DPSH(deep pairwise-supervised hashing)分别高3%、3%和1%。结论 本文提出的基于自监督的深度离散哈希的图像检索方法能有效利用深度特征信息和图像标签信息,并指导深度哈希函数的训练,且能有效减少二进制量化误差。实验结果表明,SSDDH在平均准确率上优于其他同类算法,可以有效完成图像检索任务。  相似文献   

18.
姜国权  肖禛禛  霍占强 《计算机工程》2021,47(4):226-233,240
针对行人再识别过程中相同身份行人图像颜色不一致,以及不同身份行人图像颜色相近问题,提出一种基于双分支残差网络的行人再识别方法.将RGB图像和灰度图像分别输入预训练的ResNet-50网络,获得RGB图像特征和灰度图像特征并对其进行融合,利用统一水平划分策略学习融合特征,同时将RGB特征、灰度特征和融合特征的拼接结果作为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号