首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
基于卷积神经网络在图像特征表示方面的良好表现,以及深度哈希可以满足大规模图像检索对检索时间的要求,提出了一种结合卷积神经网络和深度哈希的图像检索方法.针对当前典型图像检索方法仅仅使用全连接层作为图像特征进行检索时,存在有些样本的检索准确率为零的问题,提出融合神经网络不同层的信息作为图像的特征表示;针对直接使用图像特征进行检索时响应时间过长的问题,使用深度哈希的方法将图像特征映射为二进制的哈希码,这样哈希码中既包含底层的边缘信息又包含高层的语义信息;同时,提出了一种相似性度量函数进行相似性匹配.实验结果表明,与已有的图像检索方法相比,该方法在检索准确率上有一定程度的提高.  相似文献   

2.
基于多尺度密集网络的肺结节图像检索算法   总被引:1,自引:0,他引:1  
现有基于内容的医学图像检索(CBMIR)算法存在特征提取的不足,导致图像的语义信息表达不完善、图像检索性能较差,为此提出一种多尺度密集网络算法以提高检索精度。首先,将512×512的肺结节图像降维到64×64,同时加入密集模块以解决提取的低层特征和高层语义特征之间的差距;其次,由于网络的不同层提取的肺结节图像信息不同,为了提高检索精度和效率,采用多尺度方法结合图像的全局特征和结节局部特征生成检索哈希码。实验结果分析表明,与自适应比特位的检索(ABR)算法相比,提出的算法在64位哈希码编码长度下的肺结节图像检索查准率可以达到91.17%,提高了3.5个百分点;检索一张肺切片需要平均时间为48 μs。所提算法的检索结果在表达图像丰富的语义特征和检索效率方面,优于其他对比的网络结构,适用于为医生临床辅助诊断提供依据、帮助患者有效治疗。  相似文献   

3.
4.
基于高维肺部计算机断层扫描(CT)图像的肺结节检测是一项极具挑战性的任务。在诸多肺结节检测算法中,深度卷积神经网络(CNN)最引人注目,其中二维(2D) CNN具有预训练模型多、检测效率高等优点,应用非常广泛,但肺结节本质是三维(3D)病灶,2D CNN会不可避免地造成信息损失,从而影响检测精度。3D CNN能充分利用CT图像空间信息,有效提升检测精度,但是3D CNN存在参数多、计算消耗大、过拟合风险高等不足。为了兼顾两者的优势,提出基于深度混合CNN的肺结节检测模型,通过在神经网络模型的浅层部署3D CNN,在模型的深层部署2D CNN,并增加反卷积模块,融合了多层级的图像特征,达到了在不损失检测精度的情况下减少模型参数、增强模型泛化能力,提高检测效率的目的。在LUNA16数据集上的实验结果表明,所提出的模型在平均每次扫描8个假阳性的情况下的敏感度为0.924,优于现有的先进模型。  相似文献   

5.
基于高维肺部计算机断层扫描(CT)图像的肺结节检测是一项极具挑战性的任务。在诸多肺结节检测算法中,深度卷积神经网络(CNN)最引人注目,其中二维(2D) CNN具有预训练模型多、检测效率高等优点,应用非常广泛,但肺结节本质是三维(3D)病灶,2D CNN会不可避免地造成信息损失,从而影响检测精度。3D CNN能充分利用CT图像空间信息,有效提升检测精度,但是3D CNN存在参数多、计算消耗大、过拟合风险高等不足。为了兼顾两者的优势,提出基于深度混合CNN的肺结节检测模型,通过在神经网络模型的浅层部署3D CNN,在模型的深层部署2D CNN,并增加反卷积模块,融合了多层级的图像特征,达到了在不损失检测精度的情况下减少模型参数、增强模型泛化能力,提高检测效率的目的。在LUNA16数据集上的实验结果表明,所提出的模型在平均每次扫描8个假阳性的情况下的敏感度为0.924,优于现有的先进模型。  相似文献   

6.
针对CT图像肺结节分类任务中分类精度低,假阳性高的问题,提出了一种加权融合多维度卷积神经网络的肺结节分类模型,该模型包含两个子模型:基于二维图像的多尺度密集卷积网络模型,以捕获更宽泛的结节变化特征并促进特征重用;基于三维图像的三维卷积神经网络模型,以充分利用结节空间上下文信息。使用二维和三维CT图像训练子模型,根据子模型分类误差计算其权重,对子模型分类结果进行加权融合,得到最终分类结果。该模型在公共数据集LIDC-IDRI上分类准确率达到94.25%,AUC值达到98%。实验结果表明,加权融合多维度模型可以有效地提升肺结节分类性能。  相似文献   

7.
为了充分挖掘服装图像从全局到局部的多级尺度特征,同时发挥深度学习与传统特征各自在提取服装图像深层语义特征和底层特征上的优势,从而实现聚焦服装本身与服装全面特征的提取,提出基于多特征融合的多尺度服装图像精准化检索算法.首先,为了不同类型特征的有效融合,本文设计了基于特征相似性的融合公式FSF(Feature Similarity Fusion).其次,基于YOLOv3模型同时提取服装全局、主体和款式部件区域构成三级尺度图像,极大减弱背景等干扰因素的影响,聚焦服装本身.之后全局、主体和款式部件三级尺度图像分别送入三路卷积神经网络(Convolutional Neural Network,CNN)进行特征提取,每路CNN均依次进行过服装款式属性分类训练和度量学习训练,分别提高了CNN对服装款式属性特征的提取能力,以及对不同服装图像特征的辨识能力.提取的三路CNN特征使用FSF公式进行特征融合,得到的多尺度CNN融合特征则包含了服装图像从全局到主体,再到款式部件的全面特征.然后,加入款式属性预测优化特征间欧氏距离,同时抑制语义漂移,得到初步检索结果.最后,由于底层特征可以很好的对CNN提取的深层语义特征进行补充,故引入传统特征对初步检索结果的纹理、颜色等特征进行约束,通过FSF公式将多尺度CNN融合特征与传统特征相结合,进一步优化初步检索结果的排序.实验结果表明,该算法可以实现对服装从全局到款式部件区域多尺度CNN特征的充分提取,同时结合传统特征有效优化排序结果,提升检索准确率.在返回Top-20的实验中,相比于FashionNet模型准确率提升了16.4%."  相似文献   

8.
朱杰  张俊三  吴树芳  董宇坤  吕琳 《计算机应用》2018,38(10):2778-2781
深度卷积特征能够为图像内容描述提供丰富的语义信息,为了在图像表示中突出对象内容,结合激活映射中较大响应值与对象区域的关系,提出基于多中心卷积特征加权的图像表示方法。首先,通过预训练深度模型提取出图像卷积特征;其次,通过不同通道特征映射求和得到激活映射,并将激活映射中有较大响应值的位置认为是对象的中心;再次,将中心数量作为尺度,结合激活映射中不同位置与中心的距离为对应位置的描述子加权;最后,合并不同中心数量下的图像特征,生成图像表示用于图像检索。与池化卷积(SPoC)算法和跨维度(CroW)算法相比,所提方法能够为图像表示提供尺度信息的同时突出对象内容,并在Holiday、Oxford和Paris图像集中取得了良好的检索结果。  相似文献   

9.
多媒体技术的发展导致数字图像迅速增长,如何根据语义特征高效检索出满足用户要求的图像,已成为当前各行业迫切需要解决的问题。为此提出一种基于颜色、纹理和形状三种语义特征的图像检索方法,建立了颜色和纹理特征的语义描述,使用BP神经网络实现了低层视觉特征到高层语义特征的映射。选取Corel图像库作为测试图像库,实验通过与基于颜色语义特征的检索方法相比较,取得了良好的实验效果。  相似文献   

10.
新时期如何提升基于内容的图像检索精准度,成为图像检索领域需要思考和解决的问题。提升基于内容的图像检索精准度的关键是量化处理彩色图像,应用彩色共生矩阵提取图像纹理特点,计算图像之间的欧式距离,利用加权的颜色和纹理特征检索图像,满足用户的使用需求。为此,将基于特征融合的图像检索作为基本研究对象,分析基于特征融合的图像检索方法应用面临的问题和优化对策,旨在提升图像检索精度。  相似文献   

11.
针对病人肺结节大小各异、结节征象复杂造成的结节检测困难问题,基于迁移学习提出一种多尺度和特征融合的肺癌识别方法,根据CT图像预测病人未来一年内患肺癌的概率。根据肺结节和肺肿块大小,采用3种不同尺度的图像块输入三维结节检测网络,避免小尺度输入的结节检测网络难以获取大区域病灶整体特征的问题;在多尺度输入基础上采用特征融合策略,将网络提取的瓶颈层特征和输出层特征融合,充分描述病灶的详细特征。在Kaggle Data Science Bowl 2017数据集上的实验结果表明,所提方法降低了肺癌预测的损失值,提高了肺癌识别精度。  相似文献   

12.
针对土地利用分类中高空间分辨率遥感图像已标注样本少和传感器高度变化导致地物形变等问题,提出一种基于多尺度特征融合的土地利用分类算法。通过对多个卷积层特征进行多尺度自适应融合,降低地物形变对分类精度造成的影响。为进一步提高分类精度,利用预训练网络提取的深度特征对多尺度特征融合部分和全连接层进行预训练,采用增广数据集对整个网络进行微调。实验结果表明,自适应融合方法改善了融合效果,有效提高了土地利用分类的精度。  相似文献   

13.
针对甲状腺超声影像中甲状腺组织大小和形态的多样性以及周边组织的复杂性,提出了一种基于特征融合和动态多尺度空洞卷积的超声甲状腺分割网络.首先,利用不同膨胀率的空洞卷积和动态滤波器来融合不同感受野下的全局语义特征与不同范围的上下文详情的语义特征,从而提升网络对多尺度目标的适应性与准确度;然后,在特征降维时采用混合上采样方式...  相似文献   

14.
臂丛神经超声影像信噪比(SNR)低、边缘模糊且人工分割难度较大。现有的分割模型虽然取得了一些成果,但碍于臂丛神经结构目标区域小、形状不规则,分割效果欠佳。针对上述问题,设计基于多尺度特征融合的臂丛神经分割模型,即针对神经部位分割的特征金字塔网络(Ner-FPN)。在特征提取阶段,设计一种仿Xception的结构进行多尺度特征提取;在预测分割阶段,采用双向FPN结构进行特征融合预测。在Kaggle臂丛神经超声影像分割竞赛的BP数据集上的实验结果表明,Ner-FPN模型对臂丛神经分割的Dice相似系数(DSC)可达0.703,与主流的深度学习分割模型U-Net、SegNet相比,分别提高了10.7个百分点和14.5个百分点,对比相同数据集中的其他改进模型QU-Net和Efficient+U-Net,DSC分别提高了5.5个百分点和3.4个百分点,可见所提模型能够起到辅助诊断的效果。  相似文献   

15.
针对SSD当前存在的小目标漏检以及误检问题,结合反卷积与特征融合思想,提出hgSSD模型。将原SSD特征层反卷积后与较浅层特征结合,实现复杂场景下小目标行人检测。为了保留浅层网络特征,提高算法实时性,节省计算资源,hgSSD模型基础网络使用VGG16,而非更深层的ResNet101。为了加强对小目标的检测,将VGG16中的Conv3_3改进为特征层加入训练。融合后的网络相对于SSD较为复杂,但基本保证实时性,且成功检测到大部分SSD网络漏检的小目标,检测精度相比于SSD模型也有提升。在选择框置信度得分阈值为0.3的情况下,基本检测到SSD漏检小目标。在VOC2007+2012中相对于SSD行人检测的Average Precision值从0.765提升为0.83。  相似文献   

16.
韩建栋  李晓宇 《计算机应用》2021,41(10):2991-2996
针对行人重识别任务在特征提取时缺乏对行人特征尺度变化的考虑,导致其易受环境影响而具有低行人重识别准确率的问题,提出了一种基于多尺度特征融合的行人重识别方法。首先,在网络浅层通过混合池化操作来提取多尺度的行人特征,从而帮助网络提升特征提取能力;然后,在残差块内添加条形池化操作以分别提取水平和竖直方向的远程上下文信息,从而避免无关区域的干扰;最后,在残差网络之后利用不同尺度的空洞卷积进一步保留多尺度的特征,从而帮助模型灵活有效地解析场景结构。实验结果表明,在Market-1501数据集上,所提方法的Rank1达到95.9%,平均精度均值(mAP)为88.5%;在DukeMTMC-reID数据集上,该方法的Rank1达到90.1%,mAP为80.3%。可见所提方法能够较好地保留行人特征信息,从而提高行人重识别任务准确率。  相似文献   

17.
周东尧  伍岳庆  姚宇 《计算机应用》2015,35(4):1097-1100
特征提取是图像检索或图像配准的关键步骤,针对单一特征不能很好地表述图像的问题, 根据医学图像的特点,提出了一种融合全局特征和局部特征的医学图像检索算法。首先在研究单一特征医学图像检索算法的基础上, 提出了融合全局特征和相关反馈的检索算法;其次对尺度不变特征转换(SIFT)特征进行了优化,提出了改进的SIFT 特征提取算法和匹配算法;最后,为了保证结果的准确性并改进检索效果,采用了融合局部特征的方法逐步求精。通过对标准临床数字式X射线成像(DR)图像数据库的实验研究表明,该算法应用在医学图像的检索中有较好的结果。  相似文献   

18.
郭志强  胡永武  刘鹏  杨杰 《计算机应用》2020,40(4):1023-1029
天气状况对室外视频设备的成像效果有很大影响。为实现成像设备在恶劣天气下的自适应调整,从而提升智能监控系统的效果,同时针对传统的天气图像判别方法分类效果差且对相近天气现象不易分类的不足,以及深度学习方法识别天气准确率不高的问题,提出了一个将传统方法与深度学习方法相结合的特征融合模型。融合模型采用4种人工设计算法提取传统特征,采用AlexNet提取深层特征,利用融合后的特征向量进行图像天气状况的判别。融合模型在多背景数据集上的准确率达到93.90%,优于对比的3种常用方法,并且在平均精准率(AP)和平均召回率(AR)指标上也表现良好;在单背景数据集上的准确率达到96.97%,AP和AR均优于其他模型,且能很好识别特征相近的天气图像。实验结果表明提出的特征融合模型可以结合传统方法和深度学习方法的优势,提升现有天气图像分类方法的准确度,同时提高在特征相近的天气现象下的识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号