首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 216 毫秒
1.
高纯金属纯度分析时为了克服基体效应的影响,常采用分离基体的方法对其中痕量杂质元素进行分析测定,不仅前处理过程较为复杂,且易造成样品污染。实验以硝酸(1+1)溶解样品,在利用电感耦合等离子体质谱(ICP-MS)半定量法确定高纯银中杂质种类的基础上,通过选择适当的同位素克服了质谱干扰,采用标准加入法绘制校准曲线,在不分离基体的前提下消除了银基体对痕量杂质元素测定的基体效应影响,最终实现了ICP-MS对高纯金属银中铅、砷、铜、镍、锑、锡、钯、铋8种痕量金属杂质的直接定量测定。同时在采用ICP-MS法对高纯金属银中8种痕量金属杂质元素测定后,可根据国标方法GB/T 21198.5—2007中差减法最终计算得到银的纯度。方法的检出限为0.09~1.1 μg/L,将实验方法应用于高纯金属银的实际样品分析,加标回收率为96%~106%,相对标准偏差(RSD,n=6)不大于5.0%。  相似文献   

2.
赵琎  胡建春 《冶金分析》2015,35(6):31-34
采用10 mL硝酸(1+1)低温加热至沸溶解0.100 0 g试样,在优化仪器参数的基础上,通过选择合适的同位素以避免质谱干扰和采用标准加入法绘制校准曲线以消除基体效应,建立了电感耦合等离子体质谱法(ICP-MS)测定高纯镍板中砷、锡、锑、铅、铋的方法。各元素校准曲线的相关系数为0.999 2~0.999 9,方法检出限为0.009~0.047 μg/g。方法应用于高纯镍板实际样品分析,测得结果的相对标准偏差(RSD, n=9)为2.4%~5.4%,加标回收率为95%~106%。方法测定高纯镍板实际样品的结果与原子吸收光谱法(AAS)相吻合。  相似文献   

3.
葛晶晶  刘洁 《冶金分析》2016,36(9):37-41
高纯锌中铁、铜、镉、锑、铅、锡、砷元素含量低,基体和多原子离子干扰严重,这使得溶样后直接采用电感耦合等离子体质谱法(ICP-MS)对这7种元素进行测定的难度较大。实验表明:采用15 mL硝酸(1+2)低温溶解0.100 0 g样品,不进行基体分离,通过优化仪器参数、选择合适的同位素避免质谱干扰,采用标准加入法绘制校准曲线消除基体效应,可实现电感耦合等离子体质谱法(ICP-MS)对高纯锌中铁、铜、镉、锑、铅、锡和砷共7种痕量元素的测定。各元素校准曲线的相关系数在0.995 8到0.999 7之间,方法检出限为0.05~7.53 μg/L。采用实验方法对高纯锌实际样品中铁、铜、镉、锑、铅、锡和砷进行分析,测得结果的相对标准偏差(RSD,n=11)为2.4%~5.3%,加标回收率为96%~109%。按照实验方法测定纯锌样品中7种痕量元素,砷测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,锡和锑与原子荧光光谱法(AFS)基本一致,铁、铜、镉和铅与采用锌基体分离—ICP-MS基本一致。  相似文献   

4.
姜晴  刘嫣 《冶金分析》2017,37(6):65-68
纯金属分析时为了消除基体效应的影响,通常需要先分离基体,再对其痕量元素进行测定,这不仅前处理过程较为复杂,还易造成样品污染。实验以硝酸(1+1)溶解样品,采用基体匹配法配制标准溶液系列以绘制校准曲线,最终实现了电感耦合等离子体质谱法(ICP-MS)对纯铟中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定。通过选择合适的同位素消除了质谱干扰;采用10ng/mL钪对元素镁、铬、锰和镍进行校正,采用10ng/mL铑对钴、钼、锑和锆进行校正,克服了基体效应和信号漂移的影响。实验表明,各元素的质量浓度在1.00~50.0ng/mL范围内与其信号强度呈一定的线性关系,相关系数均大于0.999。方法的检出限为0.09~0.78ng/mL。将实验方法应用于纯铟实际样品中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定,相对标准偏差(RSD,n=7)不大于10.2%,加标回收率为88%~114%。  相似文献   

5.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

6.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.999 7;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

7.
梁钪  郑松波  高颂  张涛  张艳 《冶金分析》1981,42(10):16-23
准确测定粉末高温合金中微量及痕量元素,对粉末高温合金的生产、应用具有重要意义。将样品在放电电流40~45 mA,放电电压1 100~1 200 V,氩气流速400~450 mL/min下进行辉光放电激发,选择合适的同位素和分辨率以消除质谱干扰,使用基体匹配的内控标准样品和标准物质校准各待测元素的相对灵敏度因子(RSF),实现了高流速高分辨辉光放电质谱法(GDMS)对粉末高温合金中硼、钠、镁等26种微量及痕量元素的测定。采用实验方法对粉末高温合金内控样品中26种微量及痕量元素进行测定,各待测元素的测定值与参考值基本一致,测定结果的RSD(n=6)在0.9%~15.4%之间。采用实验方法对粉末高温合金样品进行测定,测定结果分别与电感耦合等离子体原子发射光谱法(ICP-AES)测定硼、铁和锆,高频感应燃烧红外吸收法测定硫,原子荧光光谱法测定硒,高分辨电感耦合等离子体质谱法(HR-ICP-MS)测定其余元素(钠、镁、硅、磷、钙、钒、锰、铜、镓、砷、银、锡、锑、碲、镧、铈、铪、钽、铊、铅和铋)的结果保持一致,测定结果的RSD(n=6)在0.2%~26.6%之间。  相似文献   

8.
梁钪  郑松波  高颂  张涛  张艳 《冶金分析》2022,42(10):16-23
准确测定粉末高温合金中微量及痕量元素,对粉末高温合金的生产、应用具有重要意义。将样品在放电电流40~45 mA,放电电压1 100~1 200 V,氩气流速400~450 mL/min下进行辉光放电激发,选择合适的同位素和分辨率以消除质谱干扰,使用基体匹配的内控标准样品和标准物质校准各待测元素的相对灵敏度因子(RSF),实现了高流速高分辨辉光放电质谱法(GDMS)对粉末高温合金中硼、钠、镁等26种微量及痕量元素的测定。采用实验方法对粉末高温合金内控样品中26种微量及痕量元素进行测定,各待测元素的测定值与参考值基本一致,测定结果的RSD(n=6)在0.9%~15.4%之间。采用实验方法对粉末高温合金样品进行测定,测定结果分别与电感耦合等离子体原子发射光谱法(ICP-AES)测定硼、铁和锆,高频感应燃烧红外吸收法测定硫,原子荧光光谱法测定硒,高分辨电感耦合等离子体质谱法(HR-ICP-MS)测定其余元素(钠、镁、硅、磷、钙、钒、锰、铜、镓、砷、银、锡、锑、碲、镧、铈、铪、钽、铊、铅和铋)的结果保持一致,测定结果的RSD(n=6)在0.2%~26.6%之间。  相似文献   

9.
刘锦锐  加明 《冶金分析》2021,41(8):76-83
准确、快速地测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅等19种微量杂质元素,对光致发光材料钼酸钙的质量判定有重要意义。选择过氧化氢-盐酸溶解体系对样品进行前处理;采用钼基体匹配法消除基体效应对测定的影响;通过选择合适的谱线消除光谱干扰;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定光致发光材料钼酸钙中上述19种微量杂质元素。方法中各待测元素校准曲线的线性相关系数均大于0.999 0;方法中各元素检出限为0.2~4.4 μg/g。按照实验方法测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅,结果的相对标准偏差(RSD,n=8)为0.61%~6.8%;加标回收率为95%~105%。按照实验方法测定实验室内控样品,测定结果与电感耦合等离子体质谱法(ICP-MS)测定结果一致。  相似文献   

10.
韩美  杨国武  齐荣  胡净宇 《冶金分析》2015,35(11):34-37
根据镍钨难溶特性,采用硝酸低温加热溶解样品后,多次滴加过氧化氢螯合样品表面包覆的氧化钨以保证样品被溶解完全,建立了电感耦合等离子体质谱法(ICP-MS)测定镍钨合金中痕量铈的方法。在选定的仪器测定条件下,选择140Ce为待测元素同位素,以20 μg/L 铑为内标进行测定,以铈与铑的信号强度比值为纵坐标,铈质量浓度为横坐标绘制校准曲线,结果表明:二者呈良好的线性关系,线性回归方程为y=0.688 x+0.047,线性相关系数R2=0.999。方法中铈检出限为0.08 μg/g,测定下限为0.26 μg/g。方法应用于实际样品中铈的测定,测得结果的相对标准偏差(RSD,n=9)为0.10%~1.0%,回收率为88%~117%。  相似文献   

11.
杂质元素含量对保证高纯二氧化碲产品的纯度具有重要的意义.采用1.0 mL硝酸-5.0 mL盐酸-3.0 mL酒石酸溶液溶解样品,以133CS为内标元素,用动能歧视碰撞池(KED)模式测定钙、铁和硒,采用标准模式测定其他元素,建立了采用电感耦合等离子体质谱法(ICP-MS)测定高纯二氧化碲中镁、铝、钙、铁、镍、铜、硒、锑...  相似文献   

12.
利用电感耦合等离子体质谱法(ICP-MS)测定5N~6N(纯度为99.999%~99.999 9%)高纯硒中痕量杂质元素时,硒的基体效应明显,影响结果的准确性。采用硝酸溶解高纯硒,经4-甲基-2-戊酮选择性萃取硒后,对水相进行测定,建立了电感耦合等离子体质谱法测定高纯硒中的Li、Be、B、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、As、Sr、Cd、Ba、Pb共17种痕量杂质元素的方法。实验表明,萃取时当盐酸浓度为7mol/L、MIBK体积为20mL和萃取时间为2min时,水相中硒的质量浓度低于5mg/L,此时硒基体对测定的影响可忽略。方法中各元素校准曲线的线性关系均大于0.999 5,各待测元素的方法检出限为0.2~7.0ng/g。按照实验方法对高纯硒样品中这17种杂质元素进行测定,测定结果的相对标准偏差(RSD,n=6)在5.0%~11.2%之间,加标回收率在91%~103%之间。  相似文献   

13.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

14.
黄双 《冶金分析》2019,39(3):13-20
采用电感耦合等离子体质谱法(ICP-MS)测定高纯五氧化二铌中痕量Mg、K、Ca、Cr、Fe时,因质谱干扰严重,从而导致其背景等效浓度值(BEC)较高进而无法准确测定。实验采用氢氟酸-硝酸体系以微波消解方式消解样品,以标准加入法补偿基体效应,控制基体质量浓度为500μg/mL,建立了ICP-MS测定高纯五氧化二铌中包括Mg、K、Ca、Cr、Fe在内的25种痕量杂质元素的分析方法。研究表明:采用屏蔽矩冷等离子体技术,在500μg/mL的五氧化二铌基体溶液中,Na、Mg、Al、K、Ca、Cr、Fe、Cu、Co、Ni、Mn的BEC得到明显改善,尤其是Mg、K、Ca、Cr、Fe的BEC改善效果最为显著,由常规模式下的56.5~194ng/mL降至冷等离子体模式下的0.012~0.203ng/mL;使用经实验室亚沸蒸馏提纯的电子级氢氟酸及硝酸可有效地降低试剂空白值。各元素校准曲线线性相关系数均大于0.9990;方法中各元素的检出限在0.001~0.010μg/g之间,测定下限在0.003~0.033μg/g之间。采用实验方法对高纯五氧化二铌样品中25种杂质元素进行测定,结果表明,各元素测定结果的相对标准偏差(RSD,n=11)为0.90%~12.7%,回收率为91%~111%。方法应用于两批纯度为99.999%的超高纯五氧化二铌实际样品分析,结果与辉光放电质谱法(GD-MS)基本一致。  相似文献   

15.
为了建立辉光放电质谱法(GD-MS)测定颗粒状高纯铬中痕量元素的方法,深入研究了颗粒状高纯铬样品的制备方案。比较了不同研磨方式和压片方案,考察了不同粒度、模具或压力下压制的高纯铬样品片中基体铬在不同放电参数下的信号强度。实验表明,当样品粒度为100目(150μm),采用铝杯模具在75t压力下压制时,样品成形效果较好,且对应基体铬信号强度与放电电压、放电气流和脉冲时间的线性关系较好,信号强度最高可达到5×1010 cps以上,较为理想;采用研磨仪自动研磨50~100g样品1min,100目(150μm)样品产率可达90%以上,因此采用此种方式处理样品。采用实验方法制备样品,用GD-MS分析颗粒状高纯铬中主要痕量元素的结果与电感耦合等离子体原子发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)和原子吸收光谱法(AAS)测定值吻合较好,μg/g含量级别的钠、铝、硅、钙、钛、钒、锰、铁、镍、铜这10个杂质元素测定值的相对标准偏差(RSD,n=7)在0.80%~11.6%之间,ng/g含量级别的钼、锑、铅这3个杂质元素的RSD(n=7)则在3.7%~13.6%之间。方法为进一步研究颗粒状高纯铬样品全元素分析和纯度分析提供了可靠的试验方案。  相似文献   

16.
高纯金靶材广泛应用于电子信息行业,靶材产品对其所含杂质元素含量有着极高要求,杂质元素含量偏高将影响其使用性能.对辉光放电质谱法(GDMS)放电电流、放电气体(氢气)流量和样品预溅射时间进行了优化,以丰度高、无干扰或干扰小为原则来选择待测同位素,同时通过选择分辨率来克服可能存在的质谱干扰,建立了GDMS测定高纯金靶材中A...  相似文献   

17.
高纯钨广泛应用于电子信息行业,其电子特性很大程度上取决于其杂质含量,因此,有必要对高纯钨中杂质元素进行测定。通过优化辉光放电工艺参数、选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯钨中10种痕量杂质元素的分析方法。优化后的放电条件为:放电电流3.0 mA,放电气体流量500 mL/min,预溅射时间20 min。为提高痕量杂质元素的检测准确度,利用高纯钨标准样品对10种元素的相对灵敏度因子(RSF)进行了校正,获得了与基体匹配的RSF。方法中10种元素的检出限为0.005~0.019 μg/g,定量限为0.017~0.064 μg/g。按照实验方法测定高纯钨中10种杂质元素,并用电感耦合等离子体质谱法(ICP-MS)的测定结果作为比较以验证准确性。结果表明:样品中杂质元素的含量为0.027~155.07 μg/g,质量分数小于100 μg/g的杂质元素,其结果相对标准偏差(RSD,n=6)均小于30%;质量分数大于100 μg/g的杂质元素,其结果RSD(n=6)小于10%。除Mg、Sn、Pb低于ICP-MS的检出限外,其余各杂质元素的测试结果与ICP-MS结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号