首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
巩有奎  李美玲  孙洪伟 《化工学报》2021,72(3):1675-1683
采用厌氧/缺氧/好氧运行的序批式生物反应器(An/A/O-SBR),经不同NO3-浓度(10,20,30和40 mg/L,以氮计)长期驯化,考察了不同NO3-条件下An/A/O-SBR脱氮除磷及N2O释放特性,基于不同微生物降解特性分析,确定了不同NO3-浓度下SBR系统内反硝化聚磷菌(denitrifying phosphorus accumulating organisms,DPAOs)和聚糖菌(glycogen-accumulating organisms, GAOs)竞争关系。结果表明:随NO3-浓度增加,总氮(TN)去除率由90%以上降至41.3%,TP去除率呈先增高后降低的趋势,N2O产率(N2Oemission/NOx-removal)分别为1.68%、4.17%、8.92%和14.28%。An/A/O-SBR内微生物呈PAOs和GAOs共存的污染物降解特性,高浓度NO3-缺氧吸磷过程出现NO2-积累,抑制DPAOs活性,GAOs碳源竞争能力增强,NO3--N由10 mg/L增至40 mg/L,厌氧阶段PAOs的COD耗量比例由33.5%降至25.1%,相应GAOs的COD耗量由59.3%增至74.1%。DPAOs-GAOs共生体系内,反硝化过程NO2-/HNO2积累耦合反硝化聚糖菌比例增加,加剧了高NO3-下An/A/O-SBR内N2O释放。  相似文献   

2.
巩有奎  赵强  彭永臻 《化工学报》2019,70(12):4847-4855
在(20±2.0)℃条件下,利用序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),考察不同碳氮比(C/N=3.0、5.0、8.0和10.0)下同步脱氮(simultaneous nitrification and denitrification,SND)过程N2O释放及胞外聚合物(extracellular polymeric substance,EPS)变化。C/N由3.0增至10.0,异养菌大量增殖,曝气阶段DO降低,系统硝化性能受到抑制,SBBR系统出水NH4+由0.5 mg/L以下增至(7.85±1.42)mg/L,N2O产量由(2.68±0.17)mg/L降至(1.02±0.12)mg/L。C/N=8.0,TN去除率最大为80.4%±3.5%。反应初期,微生物体内聚β-羟基烷酸酯(PHA)增加,可为后续反硝化过程提供电子供体。AOB好氧反硝化和低氧条件下异养菌反硝化过程均可导致N2O产生。C/N降低,SBBR内部缺氧区域减少,N2O还原过程减弱,释放量增加;C/N增加,N2O扩散进入生物膜内缺氧区域,促进其减量。C/N由3.0增至10.0,微生物EPS分泌由(57.6±5.6)mg / g VSS降至(32.7±3.2)mg / g VSS,其中,TB-EPS含量占65.8%~68.8%。低C/N下,紧密型EPS(TB-EPS)中多糖(PS)含量增加,生物膜更加密实,N2O扩散进入缺氧区阻力增加,释放量增加。  相似文献   

3.
以实际低C/N生活污水为处理对象,考察了AOA(厌氧/好氧/缺氧)工艺内源反硝化脱氮除磷性能。实验重点研究了生物填料的快速挂膜情况、微生物种群结构变化和系统脱氮除磷效率。结果表明,接种污泥后系统污染物去除性能迅速提高,阶段Ⅲ出水COD、NH4+-N、TIN、TP平均浓度分别为33.36 mg/L、1.80 mg/L、5.27 mg/L和0.23 mg/L,相应的去除率分别77.4%、94.6%、84.3%和94.2%。FISH实验结果表明,活性污泥中功能菌聚糖菌GAOs占比13.5%,聚磷菌PAOs占比11.1%,生物膜上硝化菌AOB占比18.3%,NOB占比9.2%。在无外加碳源条件下,系统利用原水内碳源通过后置内源反硝化和反硝化除磷实现深度脱氮除磷,同时AOA工艺只有污泥回流,较传统A2O工艺节省了硝化液回流能耗,运维管理方便。  相似文献   

4.
腐殖土强化SBR工艺除磷效果及污泥性能   总被引:1,自引:0,他引:1  
将普通SBR和腐殖土SBR反应器进行除磷效果对比。结果表明,腐殖土SBR工艺好氧吸磷量、利用单位PHA吸磷量、VFAs吸收速率都比SBR工艺明显提高,腐殖土强化了SBR工艺PAOs优势,提高了PAOs含量,抑制了GAOs的代谢活动,有利于生物除磷。腐殖土还改善了SBR工艺污泥沉降性能,SVI值比普通SBR工艺降低20%以上,VSS/MLSS比值降低8.9%,污泥性能改善是化学和生物共同作用的结果 。  相似文献   

5.
AOA-SBR工艺用于城市污水同步脱氮除磷   总被引:1,自引:0,他引:1  
侯金良  康勇  高永刚 《水处理技术》2007,33(7):78-81,94
以城市污水为研究对象,考察了不同COD/N/P对厌氧/好氧/兼氧(AOA).SBR工艺脱氮除磷效果的影响。经过3个月稳定运行,当COD:N:P-800:24:11时,AOA.SBR工艺对污水中有机物、氨氮和磷的去除率分别为100%、84%和93%。实验通过提高有机物浓度削弱聚磷菌(PAOs)与聚糖菌(GAOs)竞争底物的能力,抑制了PAOs好氧放磷速率。当COD=800mg/L时,GAOs和PAOs厌氧乙酸摄取量之比为l:9。此外,实验采用兼氧/好氧吸磷速率比,对反硝化聚磷菌数量(DNPAOs)进行估算,结果表明AOA-SBR工艺比值明显高于A20和AO工艺。因此,通过调节进水有机物浓度,可使DNPAOs在AOA-SBR同步脱氮除磷过程中发挥重要作用。  相似文献   

6.
贾淑媛  王淑莹  赵骥  李夕耀  张琼  彭永臻 《化工学报》2017,68(12):4731-4738
在序批式(sequencing batch reactor,SBR)反应器中,通过分段厌氧-好氧(厌氧后排水)运行方式,在以葡萄糖为碳源、P/C比小于2/100的条件下,成功实现了聚糖菌(glycogen accumulating organisms,GAOs)的驯化富集,厌氧段磷酸盐的释放量(phosphorus release amounts,PRA)稳定在1.0 mg·L-1以内,胞内糖原(glycogen,gly)含量是初始阶段的1.2倍。驯化后的GAOs分别以NO2--N、NO3--N为电子受体经厌氧-缺氧运行方式,可进行内源反硝化反应过程。GAOs在内源反硝化过程中依次利用胞内的聚β-羟基戊酸酯(poly-β-hydroxyvalerate,PHV)、聚β-羟基丁酸酯(poly-β-hydroxyvalerate,PHB)和gly作为内碳源。在22℃时,反硝化聚糖菌(denitrifying glycogen accumulating organisms,DGAOs)以NO2--N、NO3--N为电子受体平均比内源反硝化速率分别为0.067 g N·(g VSS)-1·d-1、0.023 g N·(g VSS)-1·d-1,常温短程内源反硝化速率约是全程内源反硝化速率的3倍。  相似文献   

7.
采用污泥微氧水解发酵液为碳源用于厌氧/好氧/缺氧模式运行的SBR工艺处理低C/N城市污水,考察了不同C/N下系统的脱氮除磷能力。结果表明:随着C/N的提高,SBR工艺的脱氮除磷效果逐渐强化,当C/N在7、8时,系统内出现了反硝化除磷现象,并在C/N=8时实现了高效同步脱氮除磷,对COD、NH4+-N、TN、TP的去除率分别为93.7%、98.9%、84.3%、96.1%,出水满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。  相似文献   

8.
以乙酸钠/丙酸交替为碳源的强化生物除磷(enhance biological phosphorus removal, EBPR)系统为研究对象,母反应器内种泥在厌氧/好氧的运行条件下已培养340 d,聚磷菌富集纯度达到92%±3%,考察了不同浓度亚硝酸盐氮(44.64、70.3、94.33、112.36 mg NO2--N·L-1)为电子受体对聚磷菌缺氧吸磷代谢的影响。结果表明,从未经缺氧驯化的高纯度聚磷菌也可以进行反硝化除磷代谢。在缺氧反应过程中NO2--N还原速率、PO43--P吸收速率、PHA降解速率随着亚硝酸浓度升高呈下降趋势,但是在初始亚硝酸盐氮浓度最高为112.36 mg NO2--N·L-1条件下,代谢并未停止,此时亚硝酸盐还原速率与磷酸盐吸收速率仍可以分别达到2.61 mg NO2--N·(g MLSS)-1·h-1和3.0 mg PO43--P·(g MLSS)-1·h-1。聚磷菌在以细胞内PHA作为碳源以NO2--N作为电子受体反硝化除磷代谢过程中,由于初始亚硝酸盐的抑制作用使NO2--N还原速率大于N2O还原速率,从而产生大量的N2O积累。初始投加NO2--N浓度为44.64、70.3、94.33、112.36 mg NO2--N·L-1时,产生的N2O占TN的比例分别为63.5%、49.0%、30.2%、24.0%。在底物充足的条件下,代谢中积累的N2O可以通过延长缺氧搅拌时间,使其转化为N2。  相似文献   

9.
孙婷  王继斌  张瑶  吕永涛 《应用化工》2023,(10):2841-2844
接种普通活性污泥,在厌氧/缺氧SBR系统驯化51 d,反硝化脱氮除磷效率分别达到(96±2)%和(88±5)%。在此基础上,取厌氧末活性污泥,研究了COD浓度(0,26.25,87.5 mg/L)对亚硝酸型反硝化除磷性能及N2O释放的影响。结果表明,随着COD浓度的增大,脱氮效率由55.44%升至63.50%和96.44%;同时,COD被合成PHB,并发生释磷的现象,导致除磷效率由33.54%降至26.87%和-0.016%;N2O转化率(N2O-N释放量/去除的TN量)由25.08%减少为22.96%和11.85%。高浓度COD有利于提升反硝化效率,并降低N2O的释放,但会降低除磷效率。  相似文献   

10.
巩有奎  彭永臻 《化工学报》2019,70(11):4410-4419
以生活污水为处理对象,采用碳纤维填料制成序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),采用N2+O2联合曝气的方式,通过改变N2和O2的比例,稳定系统内DO浓度为1.5 mg/L,考察不同曝气强度(30、20和10 L/h)下系统脱氮性能及N2O释放特性。异养菌和硝化菌共生于生物膜内,异养菌位于外层,硝化菌位于内层,曝气强度降低有利于外部异养菌大量增殖,生物膜厚度增加。曝气强度为30 L/h和10 L/h条件下,SBBR系统NH4+-N去除率分别为95%以上和79.2%±1.6%,同步脱氮效率分别为46.2%±2.6%和62.1%±2.3%,N2O产率分别为6.25%±0.6%和2.93%±0.43%。缺氧阶段,反硝化过程和PHA(聚β–羟基烷酸酯)积累同时发生;好氧阶段,PHA呈先增加后减少的趋势。初始阶段增加的PHA为后续同步发生的反硝化过程提供了电子供体。AOB的好氧反硝化过程和异养菌反硝化过程均可导致N2O的产生。曝气强度降低导致水力剪切力下降,生物膜内缺氧范围扩大,缺氧区N2O停留时间延长,利于其反硝化减量。曝气强度由30 L/h降至10 L/h,微生物胞外聚合物(EPS)分泌减少,PS/PN(多糖/蛋白质)由8.59 mg/mg降至6.58 mg/mg,生物膜致密性降低,碳源和N2O以扩散形式进入缺氧区域能力增强,N2O释放量降低。  相似文献   

11.
韦佳敏  刘文如  程洁红  沈耀良 《化工进展》2020,39(11):4608-4618
反硝化除磷(denitrifying phosphorus removal,DPR)工艺较传统脱氮除磷工艺具有节省曝气能耗、高效利用碳源、低污泥产量等优点而得到广泛的研究。本文综述了近年来在这一领域的研究进展,包括反硝化除磷菌(DPAOs)微生物学、碳源种类、pH、亚硝酸盐浓度及游离亚硝酸(free nitrous acid,FNA)、污泥龄(sludge retention time,SRT)、C/P比及mgNOx--N/mgPO43--P、聚糖菌(GAOs)等。大多数研究只关注了聚磷菌(PAOs)和GAOs之间的竞争关系,而通过GAOs作用的内碳源部分反硝化(endogenous partial-denitrification,EPD),能够将NO3--N转化为NO2--N,将进一步降低同步脱氮除磷对碳源的需求。反硝化除磷的新工艺符合我国低C/N值的污水现状,SNADPR工艺是将部分硝化、厌氧氨氧化、反硝化与反硝化除磷相结合的先进脱氮除磷工艺,Anammox-EPDPR工艺协同厌氧氨氧化、EPD和反硝化除磷,充分利用GAOs内碳源的代谢作用,以产生NO2--N,减轻DPAOs和anammox菌对电子受体的竞争。以NO2--N为电子受体的短程反硝化除磷与新型脱氮工艺的耦合将成为实现污水高效节能的同步脱氮除磷的新方向。  相似文献   

12.
陈虎  王莹  吕永康 《化工进展》2016,35(12):4020-4025
产生于生物脱氮过程的N2O是一种强效的温室气体并会导致臭氧层破坏。本文综述了污水脱氮过程中N2O的产生机理及影响因素。羟胺氧化和AOB反硝化是硝化过程产生N2O两种主要路径,诸如溶解氧、氨氮和亚硝酸盐等因素主要通过影响微生物的活动或酶的活性而间接影响硝化过程中N2O的产生。反硝化过程是N2O的另一重要产生来源,其N2O生成量的多少与N2O酶有直接关系,而溶解氧、有机碳源和亚硝酸盐等因素会影响反硝化过程中N2O酶的活性。目前新型脱氮工艺也成为N2O的潜在来源,但其N2O产生机理还有待深入研究。尽管N2O释放与周围环境变化密切相关,但本质原因还是由于微生物的作用及酶活性受到影响所致。文章最后指出污水生物脱氮过程中N2O产量控制与减量化策略是今后研究的主要方向,并给出了几点建议。  相似文献   

13.
采用低C/N比实际生活污水,以A2N2-SBR(厌氧/硝化/缺氧/硝化)双污泥系统为研究对象,重点考察了A2N2系统启动过程中的脱氮除磷特性。试验结果表明:采用在A2/O-SBR和N-SBR单元分别接种种泥,分开培养驯化聚磷菌污泥和硝化菌生物膜,并利用A2/O-SBR单元的出水作为N-SBR单元的进水,25 d好氧硝化菌生物膜挂膜成功,氨氮去除率稳定在93%以上;A2/O-SBR单元采用先厌氧/好氧(A/O)后厌氧/缺氧(A/A)的运行方式,43 d成功培养富集了反硝化聚磷菌(DPAOs),DPAOs占PAOs的67.81%,反硝化除磷率在77.9%以上;启动成功后原水中约73%和13%的COD分别在A2/O-SBR单元的厌氧段和N-SBR单元曝气过程中被去除,系统出水COD、NH+4-N、PO43--P、TN浓度分别为40.6、0、0.4、13.5 mg·L-1,达到国家《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A排放标准。  相似文献   

14.
刘越  李鹏章  彭永臻 《化工学报》2015,66(11):4652-4660
N2O是3种主要的温室气体之一,污水的生物脱氮过程是N2O产生的一个主要人为来源。通过对不同条件下生活污水短程硝化过程中N2O的产生情况进行研究,考察了短程硝化过程中硝化速率(AOR)与N2O产生速率(N2OR)之间的关系。结果表明:随着DO水平的提高,AOR逐渐上升,N2OR则呈现先增加后减少的趋势;最大N2OR出现在DO为0.6 mg·L-1时,为1.29 mg N2O-N·(g MLVSS)-1·h-1。低DO水平下AOR的提高会引起N2OR的增加;但高DO水平下较高的AOR不一定产生较多的N2O。不同条件下,N2O的产生途径不同,引起N2OR的变化。在DO较低时,N2O的产生以NH2OH/NOH途径为主,AOR的提高会促进N2O产生;随着DO的增加,N2O的产生途径主要为AOB的有氧反硝化作用,此时较高的DO水平会对这一反应造成抑制,虽然反应过程中AOR较高,但N2OR处于较低水平。  相似文献   

15.
强化生物除磷系统中聚磷菌菌群特性   总被引:5,自引:2,他引:5       下载免费PDF全文
为了研究强化除磷系统中聚磷菌(PAOs)菌群特性,通过批次试验分别考察了厌氧/好氧(A/O)污泥和厌氧/缺氧(A/A)污泥吸磷特性。试验结果表明:A/O污泥好氧吸磷速率(qPo)大于缺氧吸磷速率(qPa),而A/A污泥qPo却小于qPa。基于此试验结果可得出目前普遍应用qPa与qPo的比值表征反硝化聚磷菌(DPAOs)占PAOs的相对百分比的方法不合理。聚磷菌菌群构成与电子受体类型有关,根据电子受体类型可将PAOs分为三种,即:PON(既能以氧作为电子受体,也能以硝态氮作为电子受体)、PO(只能以氧作为电子受体)和PN(只能以硝态氮作为电子受体)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号