共查询到19条相似文献,搜索用时 109 毫秒
1.
视频可以看作是连续的视频帧图像组成的序列,视频彩色化的实质是对图像进行彩色化处理,但由于视频的长期序列性,若直接将现有的图像着色方法应用到视频彩色化上极易产生抖动或闪烁现象。针对这个问题,提出一种结合长短时记忆(LSTM)和卷积神经网络(CNN)的混合神经网络模型用于视频的着色。该方法用CNN提取视频帧的语义特征,同时使用LSTM单元学习灰度视频的时序信息,保证视频的时空一致性,然后融合局部语义特征和时序特征,生成最终的彩色视频帧序列。通过对实验结果的定量分析和用户研究表明,该方法在视频彩色化上实现了较好的效果。 相似文献
2.
鉴于不同类型氨基酸的相互作用对蛋白质结构预测的影响不同,文中融合卷积神经网络和长短时记忆神经网络模型,提出卷积长短时记忆神经网络,并应用到蛋白质8类二级结构的预测中.首先基于氨基酸序列的类别信息和氨基酸结构的进化信息表示蛋白质序列,并采用卷积提取氨基酸残基之间的局部相关特征,然后利用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用,最后将提取的蛋白质的局部相关特征和远程相互作用用于蛋白质8类二级结构的预测.实验表明,相比基准方法,文中模型提高8类二级结构预测的精度,并具有良好的可扩展性. 相似文献
3.
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,实验结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。 相似文献
4.
在农业生产中,准确的风速预报对农作物安全防范有着至关重要的作用。针对云南地区的高海拔和多山,基于卷积神经网络框架,提出了卷积长短时序分析神经网络-卷积门控循环单元神经网络(ConvLSTM-ConvGRU)混合风速预测模型。通过神经网络框架的改进,有效的提高了模型对风场空间特征的提取。利用美国国家环境预报中心(NCEP)提供的再分析风速数据集,使用ConvLSTM、ConvGRU、ConvLSTM-ConvGRU混合模型分别对云南地区的风速进行。实验结果表明:ConvLSTM-ConvGRU混合风速预测模型能够有效对云南地区风场进行预测,相较于另外两个模型提高了预测准确度。 相似文献
5.
6.
针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3.6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15.7%和11.8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3.2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。 相似文献
7.
传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部分组成:前端为卷积注意力网络(CAN),学习通道和时间维度中的深层故障特征,提高特征的表征能力;后端为改进LSTM网络,基于退化特征对轴承进行寿命预测.归一化健康指标至[0,1]区间内,得到相同的失效阈值;使用五点平滑法对预测结果进行处理,实现预测结果的输出;利用留一法对轴承全寿命试验数据进行验证,测试模型的准确性和适应性.试验结果表明:所提模型的平均均方根误差和平均绝对值误差比仅用CNN模型预测值低54.12%和59.05%,比仅用LSTM模型预测值低39.06%和43.42%,比卷积长短时记忆网络(CNN-LSTM)低20.41%和25.86%. 相似文献
8.
刘志超 《数字社区&智能家居》2021,(10):249-251,265
视频预测一直以来都是计算机视觉领域的热点问题,由于其广泛的实用价值和理论价值,引起了研究人员的广泛关注.该文对主流的视频帧预测算法进行了研究,首先介绍了视频预测领域的常见问题,并由基本架构对视频预测算法进行了分类,接下来介绍了该领域常用的数据集并给予评价,最后从视频预测算法的运行流程和最新的论文角度上,总结该领域算法的... 相似文献
9.
针对信号调制方式识别计算复杂度高、低信噪比(SNR)条件下识别率较低、网络结构相对单一的问题,提出一种基于卷积长短时深度神经网络(CLDNN)的信号调制方式识别方法。首先,采用基准开源数据集RadioML2016.10a,对该数据集做同相正交(I/Q)数据转换,并将得到的结果作为网络输入;其次,构建CLDNN模型,模型分为三层卷积神经网络(CNN)、两层长短期记忆(LSTM)网络和两层全连接网络(FCN);最后,对所提模型进行训练及测试,得到分类结果。实验结果表明,对11种信号在不同SNR下进行调制方式识别时,与现有的单一网络结构模型如残差神经网络(RES)模型、CNN模型和残差生成对抗网络(RES-GAN)模型进行对比,随着SNR的提升,CLDNN模型的识别准确率也随之提高,且CLDNN模型的识别准确率均高于其他3种对比模型,当SNR在4 dB以上时,达到了92%。 相似文献
10.
由于循环神经网络拥有复杂的模型结构,使训练模型达到最优变得困难。因此,提出一种最小窥视孔长短时记忆模型,它只有一个唯一门来更新信息,拥有两个网络层,通过减少一定的模型参数降低模型训练的难度,提高模型性能。实验结果表明,在不同数据集上,该模型性能高于长短期记忆模型,部分高于门循环单元模型,在参数个数、运行时间方面,其远小于长短期记忆模型以及门循环单元模型。 相似文献
11.
针对电池荷电状态(SOC)预测的精确度与稳定性问题以及深层神经网络的梯度消失问题,提出一种基于一维卷积神经网络(1D CNN)与长短期记忆(LSTM)循环神经网络(RNN)结合的电池SOC预测方法——1D CNN-LSTM模型.1D CNN-LSTM模型将电池的电流、电压和电阻映射到目标值SOC.首先,通过一层一维卷积... 相似文献
12.
基于BiLSTM-CNN串行混合模型的文本情感分析 总被引:1,自引:0,他引:1
针对现有文本情感分析方法准确率不高、实时性不强以及特征提取不充分的问题,构建了双向长短时记忆神经网络和卷积神经网络(BiLSTM-CNN)的串行混合模型。首先,利用双向循环长短时记忆(BiLSTM)神经网络提取文本的上下文信息;然后,对已提取的上下文特征利用卷积神经网络(CNN)进行局部语义特征提取;最后,使用Softmax得出文本的情感倾向。通过与CNN、长短时记忆神经网络(LSTM)、BiLSTM等单一模型对比,所提出的文本情感分析模型在综合评价指标F1上分别提高了2.02个百分点、1.18个百分点和0.85个百分点;与长短时记忆神经网络和卷积神经网络(LSTM-CNN)、BiLSTM-CNN并行特征融合等混合模型对比,所提出的文本情感分析模型在综合评价指标F1上分别提高了1.86个百分点和0.76个百分点。实验结果表明,基于BiLSTM-CNN的串行混合模型在实际应用中具有较大的价值。 相似文献
13.
14.
针对动态网络节点之间链路预测的准确率低和运行时间长的情况,提出了一种以降噪自编码器(dAE)为框架,结合图卷积网络(GCN)和长短期记忆(LSTM)网络的动态网络表示学习模型dynGAELSTM.首先,该模型的前端采用GCN捕获动态图节点的高阶图邻域的特征信息;其次,将提取到的信息输入dAE的编码层以获取低维特征向量,... 相似文献
15.
高级辅助驾驶装置采用机器视觉技术实时处理摄录的行车前方车辆视频,动态识别并预估其姿态和行为。针对该类识别算法精度低、延迟大的问题,提出一种基于长短期记忆(LSTM)的车辆行为动态识别深度学习算法。首先,提取车辆行为视频中的关键帧;其次,引入双卷积网络并行对关键帧的特征信息进行分析,再利用LSTM网络对提取出的特性信息进行序列建模;最后,通过输出的预测得分判断出车辆行为类别。实验结果表明,所提算法识别准确率可达95.6%,对于单个视频的识别时间只要1.72 s;基于自建数据集,改进的双卷积算法相比普通卷积网络在准确率上提高8.02%,与传统车辆行为识别算法相比准确率提高6.36%。 相似文献
16.
17.
18.
针对传统手足口病(HFMD)发病趋势预测算法预测精度不高、未结合其他影响因素、预测时间较短等问题,提出结合气象因素使用长短时记忆(LSTM)网络进行长期预测的方法。首先,将发病序列通过滑动窗口的方式转化为网络的输入和输出;然后采用LSTM网络进行数据建模和预测,并使用迭代预测的方式获得较长期的预测结果;最后在网络中增加温度和湿度变量,比较这些变量对预测结果的影响。实验结果表明,加入气象因素能够提高模型的预测精度,所提模型在济南市数据集上的平均绝对误差(MAE)为74.9,在广州市数据集上的MAE为427.7,相较于常用的季节性差分自回归移动平均(SARIMA)模型和支持向量回归(SVR)模型,该模型的预测准确率更高。可见所提模型是HFMD发病趋势预测的一种有效的实验方法。 相似文献
19.
针对基于规则的运动规划算法需要预先定义规则和基于深度学习的方法没有利用时间特征的问题,提出一种基于深度级联神经网络的运动规划模型。该模型将卷积神经网络(CNN)和长短期记忆网络(LSTM)这两种经典的深度学习模型进行融合并构成一种新的级联神经网络,分别提取输入图像的空间和时间特征,并用以拟合输入序列图像与输出运动参数之间的非线性关系,从而完成从输入序列图像到运动参数的端到端的规划。实验利用模拟驾驶环境的数据进行训练和测试,结果显示所提模型在乡村路、高速路、隧道和山路四种道路中均方根误差(RMSE)不超过0.017,且预测结果的稳定度优于未使用级联网络的算法一个数量级。结果表明,所提模型能有效地学习人类的驾驶行为,并且能够克服累积误差的影响,适应多种不同场景下的路况,具有较好的鲁棒性。 相似文献