首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
核电站严重事故发生后,反应堆压力容器(RPV)固壁在熔池作用下会发生烧蚀、减薄。开展RPV下封头耦合烧蚀传热分析对堆坑注水有效性论证和RPV剩余壁厚确认有重要的理论指导意义。本文以CPR1000反应堆压力容器为研究对象,在FLUENT 17.2平台下,基于动态网格方法和UDF二次开发,构建了综合考虑RPV固壁瞬态烧蚀与导热、RPV内壁热流密度再分布及RPV外壁过冷沸腾的全耦合计算模型,获取了9 000 s内的堆坑两相流场分布和RPV固壁烧蚀温度场,分析确定了最小剩余壁厚和发生位置。结果表明:使用动态网格捕捉壁面烧蚀的方法可行,本文全耦合计算模型在分析RPV固壁瞬态烧蚀过程方面有一定优势。  相似文献   

2.
堆芯熔化严重事故下保证反应堆压力容器(RPV)完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。在进行严重事故堆芯熔化物堆内包容(IVR)下RPV结构完整性分析中,RPV内外壁和沿高度方向的温度分布以及剩余壁厚是结构分析的重要输入。本文采用CFD分析方法对RPV堆内熔融物、RPV壁以及外部气液两相流动换热进行热-固-流耦合分析,获得耦合情况下的温度场、流场、各相份额分布以及RPV的剩余壁厚,为RPV在严重事故IVR下的结构完整性分析提供依据。  相似文献   

3.
核电厂在发生堆芯熔化严重事故时,采用堆内熔融物滞留(IVR)策略将熔融物包容在反应堆压力容器(RPV)内是一项重要缓解措施。在IVR策略期间,RPV下封头在熔融物的极高温度载荷和力学载荷的共同作用下很有可能因过度蠕变变形而失效。因此,有必要对熔融物滞留条件下RPV下封头进行蠕变变形分析,以保证RPV结构完整性。该文在假定IVR条件下,采用有限元方法对RPV下封头进行热-结构耦合分析,通过计算得到容器壁的温度场和应力场,以及下封头的塑性和蠕变变形,并结合塑性和蠕变断裂判据对下封头进行失效分析。结果表明,考虑蠕变影响后,结构的变形将大大增加;严重事故下采取熔融物滞留策略期间,RPV下封头的主要失效模式为蠕变失效而非塑性失效;内压对蠕变变形量和蠕变失效时间有较大影响。该文为严重事故下RPV下封头的蠕变和失效研究提供了分析方法。   相似文献   

4.
熔融物反应堆压力容器(RPV)内滞留(IVR)是三代核电厂重要的严重事故缓解措施,而防止RPV的热工失效和结构失效是实现IVR的前提。本文建立考虑内壁面熔蚀的RPV有限元模型,在温度场分析的基础上,开展蠕变计算,得到不同时刻下的应力应变响应,通过选取典型评定路径并利用基于Larson-Miller参数的累积损伤理论进行蠕变损伤计算及评价。分析结果表明:在考虑一定内压的IVR条件下,RPV不会发生蠕变断裂,长期结构完整性可保证。本文的研究方法可为后续核电厂RPV在IVR条件下的结构完整性分析提供参考。  相似文献   

5.
熔融物反应堆压力容器(RPV)内滞留(IVR)是三代核电厂重要的严重事故缓解措施,而防止RPV的热工失效和结构失效是实现IVR的前提。本文建立考虑内壁面熔蚀的RPV有限元模型,在温度场分析的基础上,开展蠕变计算,得到不同时刻下的应力应变响应,通过选取典型评定路径并利用基于Larson-Miller参数的累积损伤理论进行蠕变损伤计算及评价。分析结果表明:在考虑一定内压的IVR条件下,RPV不会发生蠕变断裂,长期结构完整性可保证。本文的研究方法可为后续核电厂RPV在IVR条件下的结构完整性分析提供参考。  相似文献   

6.
堆芯熔化严重事故下保证反应堆压力容器完整性非常重要,高温蠕变失效是堆芯熔化严重事故下反应堆压力容器的主要失效模式。本文介绍了近年来在假想堆芯熔化严重事故下国内外反应堆压力容器高温蠕变行为的研究进展及现状,着重阐述了在材料高温蠕变试验、缩比模型试验和数值模拟等方面取得的成果,以及国内在RPV结构完整性高温蠕变行为研究方面的最新成果,指出了目前研究中存在的问题并提出开展多轴拉伸试验、三维耦合效应的温度场分析和缩比模型试验等研究方向。  相似文献   

7.
为了获得反应堆压力容器(RPV)材料在高温下的蠕变行为,保证RPV在严重事故工况下的完整性,本研究对国产RPV用16MND5钢的高温蠕变性能进行了测试,获得了600~900℃下材料的蠕变性能,并基于应变强化的基本蠕变本构模型与基于延性耗竭理论的蠕变损伤模型,建立了适用于16MND5钢的蠕变损伤本构模型,给出了材料的蠕变损伤模型参数。结果表明,本文提出的蠕变损伤本构模型的有限元模拟数据与试验数据符合性较好,验证了此蠕变损伤模型的正确性。该方法可用于严重事故情况下RPV的蠕变损伤分析,为RPV的完整性分析提供支持。   相似文献   

8.
熔融物堆内滞留条件下压力容器变形   总被引:2,自引:0,他引:2  
熔融物堆内滞留(In-Vessel Retention,IVR)已经成为第三代反应堆一项关键的严重事故缓解策略,而压力容器外部冷却(External Reactor Vessel Cooling,ERVC)技术则是保证IVR得以成功实施的关键。当发生堆芯熔化时,高温熔融物对压力容器(Reactor Pressure Vessel,RPV)下封头的热冲击会导致RPV壁面和由其构成的外部冷却通道的形状发生变化,使局部传热恶化,进而造成IVR的失效。因此,有必要对IVR条件下RPV壁面的变形进行研究。本文利用有限元软件ANSYS对RPV进行了几何建模、温度场分析和力学场分析。结果表明,在RPV外部实现冷却、内部实现泄压的前提下,壁面变形为13.85-18.75 mm。在1 MPa内压的作用下,高温蠕变会使壁面变形随时间增大,但其增量有限。热膨胀是造成壁面变形的主要因素。  相似文献   

9.
熔融物堆内滞留(In-vessel Retention,IVR)指的是在核电厂严重事故发生后,通过在压力容器和保温层间隙注入冷却水防止压力容器熔穿失效。本文基于COMSOL Multiphysics软件建立了一个流-热-固耦合计算模型,对IVR技术作用下的反应堆压力容器(Reactor Pressure Vessel,RPV)下封头双层熔融池的演变过程进行了仿真研究。当前模型计算结果表明:在稳态分层的状态下,与氧化物层接触的下封头未发生明显的熔化,与金属层接触的下封头会发生明显的熔化,但在被冷却条件下依然可以保持压力容器的完整性。  相似文献   

10.
压力容器直接注入(DVI)接管在热冲击下的动态应力特性对于反应堆压力容器(RPV)结构完整性评估具有重要意义。建立了含DVI接管的RPV压力壳热流固耦合数值计算模型,并进行了验证分析;然后研究了蓄压安注箱(ACC)和堆芯补水箱(CMT)安注时RPV筒体和DVI接管热工水力特性;最后分析了热冲击下RPV筒体和DVI接管连接高应力区的温度分布、等效应力和等效塑性应变分布特性。研究结果表明,ACC安注阶段RPV筒体和DVI接管连接区存在较大的温度梯度和等效应力,且发生了局部塑性变形。若发生承压热冲击事件,应控制好DVI接管连接区温差,确保反应堆压力容器的结构完整性。本文开发的热冲击下热流固耦合数值计算模型和计算方法可用于核岛内DVI接管与RPV筒体的安全性评价,也可用于类似承压结构在热冲击下的动态应力特性分析。   相似文献   

11.
After a reactor core melt accident, creep failure may occur in the residual solid wall of the reactor pressure vessel (RPV) under the influence of high temperature difference, internal pressure and the weight of the molten pool. In this work, the CPR1000 RPV was used as a research object. The ablation temperature field of the lower head of RPV was solved through the secondary development of the FLUENT software. And then, a CFD-FEM coupling analysis was carried out based on ANSYS Workbench software. The equivalent stress, the equivalent plastic strain and the equivalent creep strain of the RPV within 72 h under severe accident after the wall ablation and temperature field distribution formed stably were calculated. The risk of creep failure of the RPV was evaluated. The results show that when the reactor pit water injection measure puts into operation, the residual solid wall of the RPV will not experience creep failure and plastic deformation failure within 72 h, and besides, the pressure relief can significantly increase the safety margin of the structural integrity of the RPV.  相似文献   

12.
After a reactor core melts accident, the solid wall of the reactor pressure vessel (RPV) will be inevitably eroded by the melting core which contains large density of heat flux. The analysis of the coupled ablation and heat transfer of the lower head for RPV is of great theoretical significance to the effectiveness demonstration of water injection in reactor pit and the confirmation of the residual wall thickness of RPV. In this work, numerical simulations were carried out based on the RPV model of CPR1000 using the CFD software FLUENT 17.2. Based on dynamic mesh model and user-defined function (UDF) redevelopment, a fully coupling calculation model considering the transient ablation and heat conduction of solid wall of RPV, the redistribution of heat flux density in RPV inner wall and the subcooled boiling of RPV outer wall was established. Both two-phase flow pattern in the reactor pit and temperature field of RPV solid wall ablation within 9 000 s were obtained and the minimum residual wall thickness and the occurrence location were determined by analysis. The results show that it is feasible to use dynamic mesh to capture wall ablation. The fully coupling calculation model has certain advantages in analyzing the transient ablation process of RPV under severe accident.  相似文献   

13.
Considering the hypothetical core melt down scenario for a light water reactor (LWR) the failure mode of the reactor pressure vessel (RPV) has to be investigated to determine the loadings on the containment. The failure of reactor vessel retention (FOREVER)-experiments, currently underway, are simulating the thermal and pressure loadings on the lower head for a melt pool with internal heat sources. Due to the multi-axial creep deformation of the vessel with a non-uniform temperature field these experiments are an excellent source of data for validation of numerical creep models. Therefore, a finite element (FE) model has been developed based on a commercial multi-purpose code. Using the computational fluid dynamics (CFD) module the temperature field within the vessel wall is evaluated. The transient structural mechanical calculations are performed using a new numerical approach, which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a three-dimensional array is developed where the creep strain rate is evaluated according to the values of the actual total strain, temperature and equivalent stress. Care has to be exercised performing post-test calculations particularly in the comparisons of the measured data and the numerical results. Considering the experiment FOREVER-C2, for example, the recorded creep process appears to be tertiary, if a constant temperature field is assumed. But, small temperature increase during the creep deformation stage could also explain the observed creep behavior. Such considerations provide insight and better predictive capability for the vessel creep behavior during prototypic severe accident scenarios.  相似文献   

14.
Sensitivity calculation on melt behavior and lower head response at Fukushima Daiichi unit 1 reactor was performed with methods for estimation of leakages and consequences of releases (MELCOR) 2.1 and moving particle semi-implicit (MPS) method. Four sensitivity cases were calculated, considering safety relief valve (SRV) seizure, penetrations and debris porosity. The results indicated that the lower head failed due to creep rupture, not considering penetrations; otherwise it would have failed due to penetration tube rupture and ejection at an earlier time, resulting in part of debris dropping into the cavity of the drywell. The temperature of residual debris in pressure vessel kept low, and the vessel wall did not suffer creep failure up to 15 hours after reactor scram from which moment the water injection became available. Another aspect was that reactor pressure vessel (RPV) depressurization postponed the lower head creep failure time, and the low debris porosity brought forward the penetration rupture time. Either lower head creep failure or penetration rupture and ejection occurred in the central part of the pressure vessel. In MPS calculation, a slice of debris bed together with lower head, including an instrument guide tube, was chosen as the computational domain. Detailed temperature profiles in debris bed, penetration and vessel wall were obtained. The penetration rupture time calculated by MPS was earlier than the MELCOR result, while the vessel wall creep failure time was later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号