首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以N,N,N′,N′-四辛基-2-甲基-3-氧戊二酰胺(Me-TODGA)或N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、磷酸三丁酯(TBP)为相改良剂、煤油为稀释剂,对比研究了水相酸度、萃取剂浓度、锶浓度、温度对Me-TODGA-TBP体系和TODGA-TBP体系萃取Sr2+的影响,并采用斜率法确定了萃合物的组成。结果表明,2种酰胺荚醚萃取Sr2+的分配比(DSr)随HNO3浓度(c(HNO3)=0.1~2.7 mol/L)、萃取剂浓度(c(萃取剂)=0.05~0.3 mol/L)的增加而增大,随Sr2+浓度的升高略有下降,随温度的升高而下降。2种萃取剂的萃合物组成分别为Sr(NO3)2•3Me-TODGA和Sr(NO3)2•2TODGA。萃取反应的ΔH分别为-69.46 kJ/mol和-51.39 kJ/mol,ΔS分别为-190.5 J/(mol•K)和-128.4 J/(mol•K),ΔG分别为-12.68 kJ/mol和-13.12 kJ/mol。相比之下,Me-TODGA萃取Sr2+的分配比不到TODGA的1/5。  相似文献   

2.
N,N-二(2-乙基己基)二甘酰胺酸(HL)作为一种三齿单羧酸类萃取剂,在pH=1~4区域至强酸性条件下对三价镧系离子均具有一定的萃取能力,但不同酸度下的萃取机理不同。为更好地确定其配位机理,本文对HL从硝酸盐体系中萃取Pr(Ⅲ)及N,N-二甲基二甘酰胺酸(HL′)在水溶液中与Pr(Ⅲ)的配位化学进行了研究。在测定Pr(Ⅲ)与萃取剂HL在pH=1~4条件下生成萃合物的光谱和组成的基础上,结合水溶性同系物HL′与Pr(Ⅲ)在水溶液中生成的配合物及其光谱和结构,确定了HL与Pr(Ⅲ)在硝酸体系下pH=1~4区域内生成的萃合物有两种:一种是已报道过的具有PrL3核心的萃合物;另一种是PrL2NO3。在水溶液中通过电位滴定法和光谱滴定法研究了HL′与Pr(Ⅲ)生成配合物的稳定常数及在紫外-可见区的吸收光谱。在1 mol/L NaClO4介质中,去质子化的HL′可与Pr(Ⅲ)形成PrL′2+、PrL′+2、PrL′3 3种形式配合物,随着配体结合数的增加,Pr(Ⅲ)在400~600 nm的几个特征吸收峰持续红移,吸收强度稍有减弱。在水溶液中通过缓慢挥发获得了PrL′3单晶化合物,晶体结构测定结果表明,配合物中3个配体均以三齿配体形式与Pr(Ⅲ)配位。通过比较水溶液中PrL′3配合物、有机相中PrL3萃合物的吸收光谱以及PrL′3单晶化合物的固体漫反射光谱,确定在水溶液中PrL′3配合物及萃取体系中具有PrL3核心的萃合物中,都有3个三齿配体与Pr(Ⅲ)配位;通过比较水溶液中以1∶2配位的配合物PrL′+2的吸收光谱与组成为PrL2NO3的萃合物的吸收光谱,发现590 nm处峰形明显不同,表明萃合物中硝酸根很可能与Pr(Ⅲ)也直接配位。在萃取剂与金属离子浓度比不同时,生成的萃合物种类不同,当萃取剂浓度与金属离子浓度比小于等于2时,推测硝酸根在内层参与配位。  相似文献   

3.
为进一步研究N,N′-二甲基-N,N′-二辛基双酰胺(DMDODGA)对镧系和锕系元素的萃取过程,以40%正辛醇/煤油作为稀释剂,研究了DMDODGA对硝酸环境中Ce(Ⅲ)的萃取行为。结果表明,DMDODGA在40%正辛醇/煤油中表现出对Ce(Ⅲ)很好的萃取能力,但Ce(Ⅲ)的萃取趋势随硝酸浓度而变化,且分配比随硝酸浓度变化的峰值随萃取剂浓度的上升而向低酸度方向移动。使用斜率法,在0.1 mol/L和0.5 mol/L酸度下,均得到配合物中Ce(Ⅲ)与DMDODGA的化学计量数之比为1∶3。Ce(Ⅲ)和DMDODGA形成带正电的1∶3的络合物,该络合物再与NO-3相结合形成电中性的分子团。另外,红外光谱分析结果证实,Ce(Ⅲ)和DMDODGA中的C[CDS1]O基团存在强相互作用。反萃实验结果表明,由于DMDODGA与Ce(Ⅲ)结合得非常紧密,3种常用反萃剂并不能很好地从有机相中将Ce(Ⅲ)反萃入水相。  相似文献   

4.
不对称荚醚萃取铀(Ⅵ)和稀土(Ⅲ)的研究   总被引:3,自引:0,他引:3  
研究了不对称荚醚N,N'-二甲基二己基-3-氧戊二酰胺(DMDHGA)、N,N’-二甲基二辛基-3-氧戊二酰胺(DMDOGA)、N,N’-二甲基二月桂基-3-氧戊二酰胺(DMDLGA)和N,N’-二甲基二己基-3,6-二氧辛二酰胺(DMDHOA)在HNO3介质中对铀(Ⅵ)、稀土(Ⅲ)和锶(Ⅱ)的萃取行为。结果表明,随着酰胺官能团氮原子上烷基链增大,不对称荚醚萃取性能下降,与铀(Ⅵ)形成的萃合物在烷烃稀释剂中的溶解性增加。分别使用正十二烷、异辛烷和煤油作稀释剂时,DMDOGA萃取铀(Ⅵ)均出现第三相,而DMDHGA,DMDHOA和DMDLGA萃取时均不出现第三相。DMDHGA萃取铀(Ⅵ)和锶(Ⅱ)的分配比及铀(Ⅵ)与锶(Ⅱ)之间的分离系数均比对称荚醚N,N,N’,N'-四丁基-3-氧戊二酰胺(TBGA)的大,有利于铀(Ⅵ)与锶(Ⅱ)的分离。DMDLGA与铀(Ⅵ)生成1:1型萃合物;而DMDLGA和DMDOGA与混合稀土(Ⅲ)(组成以氧化物计为27%La2O3,51%CeO2,6%Pr6O11,16%Nd2O3)生成1:2型萃合物。  相似文献   

5.
研究了以N,N,N’,N’-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂、正十二烷为稀释剂对Am(Ⅲ)和三价镧系元素的萃取行为,主要考察了萃取剂浓度、HNO3浓度、NaNO3浓度、金属离子浓度和温度的影响。结果表明:随着TODGA浓度的增加,TODGA/正十二烷和TODGA-DHOA/正十二烷两种萃取体系对Am(Ⅲ)和三价镧系元素的萃取分配比显著增加,DHOA对三价锕系和镧系萃取能力很弱,而DHOA的加入,对TODGA/正十二烷萃取Am(Ⅲ)和三价镧系元素具有一定抑制作用。TODGA萃取三价镧系元素的分配比随着镧系原子序数的增加而增加,Am的分配比与Eu相近。TODGA萃取稀土元素是放热反应,萃取过程中焓变起主导作用,吉布斯自由能变(-ΔG)变化的规律也表明随着镧系原子序数的增加,TODGA对其萃取能力增强。通过对TODGA萃取Am(Ⅲ)和三价镧系元素机理探讨,得到萃取反应方程式均为:M3+aq+3NO-3,aq+3TODGAorg→M(NO3)3·3TODGAorg  相似文献   

6.
离子液体具有独特的物理化学性质,可以参与或影响两亲分子自组装。离子液体介质中的自组装研究所涉及的两亲分子多为有机化合物,而金属配合物在离子液体中的组装鲜有报道。另外,萃取剂正辛基苯基-N,N-二异丁基胺基甲酰基甲基氧化膦(CMPO)在1-乙基-3-甲基咪唑双三氟甲基磺酰亚胺盐(C2mimNTf2)中萃取UO2+2时形成的萃合物结构组成有待深入研究。本工作探究了UO2(CMPO)3(NO3)2在C2mimNTf2中的组装行为。原位透射电镜(原位TEM)研究表明:UO2(CMPO)3(NO3)2在C2mimNTf2(含70μL水)中形成聚集体,冷冻刻蚀电镜(FF-TEM)显示该聚集体是胶束。此外,研究了CMPO-C2mimNTf2体系萃取UO2+2时形成的萃合物组成。离子色谱结果表明:萃取前后水相中NO-3浓度变化不大,电喷雾质谱(ESI-MS)上均为UO2(CMPO)3(NTf2)2的碎片离子峰,这些结果说明:CMPO-C2mimNTf2体系萃取UO2+2时形成的萃合物组成为UO2(CMPO)3(NTf2)2而非UO2(CMPO)3(NO3)2。这有助于深入了解金属配合物在离子液体中的组装行为,并对理解CMPO-C2mimNTf2体系萃取UO2+2的机理提供了重要参考。  相似文献   

7.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

8.
为了解2,6-双(5,6-二异丙基-1,2,4-三唑-3)吡啶(iPr-BTP)在硝酸介质中对镅和铕的萃取行为,以30%辛醇/正十二烷溶液为稀释剂,考察了稀释剂的组成、萃取时间、硝酸浓度、萃取剂浓度及硝酸钠浓度对iPr-BTP萃取Am(Ⅲ)和Eu(Ⅲ)的影响,确定了萃合物组成和萃取反应方程式。实验结果表明,该萃取剂对镅的萃取能力较强,而对铕的萃取能力较弱。iPr-BTP对Am(Ⅲ)和Eu(Ⅲ)的萃取反应方程式可表示为: M3++3NO-3+3(iPr-BTP)(o)→M(NO3)3·3(iPr-BTP)(o)。  相似文献   

9.
研究了以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA)为萃取剂,正十二烷为稀释剂体系对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Pu(Ⅲ)、Pu(Ⅳ)和Pu(Ⅵ)的萃取分配比大小顺序均为:D(Pu(Ⅲ))>D(Pu(Ⅳ))>D(Pu(Ⅵ)),TODGA/正十二烷体系中加入DHOA时,对Pu(Ⅲ,Ⅳ,Ⅵ)萃取具有一定抑制作用,但在较高酸度范围内(≥3.0 mol/L HNO3),不论体系中Pu的价态为何种形式,TODGA均能对其进行有效的回收。TODGA萃取Pu(Ⅲ,Ⅳ,Ⅵ)的方程式分别为: Pu3++3NO-3a+4TODGAo→Pu(NO3) 3·4TODGAo Pu4+a+4NO-3a+3TODGAo→Pu(NO3)4·3TODGAo PuO2+2a+2NO-3a+2TODGAo→PuO2(NO3)2·2TODGAo  相似文献   

10.
合成了N,N′-二乙基-N,N′-二苯基-[2,2′-联吡啶]-6,6′-二硫代酰胺(Et-Ph-BCTABipy)萃取剂,并利用13C NMR和1H NMR对其进行了表征;研究了相接触时间、萃取剂浓度、水相初始酸度和Pd2+浓度等因素对Et-Ph-BCTABipy萃取Pd2+性能的影响,利用摩尔比法确定了Et-Ph-BCTABipy与Pd2+所形成的配合物组成;同时,在Ln(Ⅲ)与Pd2+共存体系中研究了Et-Ph-BCTABipy对Pd2+的萃取选择性。结果表明:Et-Ph-BCTABipy在HNO3体系中对Pd2+具有较强的萃取性能和较高的萃取选择性;萃取过程中Et-Ph-BCTABipy与Pd2+以1∶2的比例结合,其萃取平衡常数Kex=3.42×106。  相似文献   

11.
为开发Pu(Ⅳ)的高选择性萃取剂,实现废液中微量钚的回收,以正十二烷作为稀释剂,研究2,2′-((4-乙氧基-1,2-亚苯基)双(氧基))双(N,N-双(2-乙基己基)乙酰胺)(4-EthoxyBenzoDODA)对U(Ⅵ)、Pu(Ⅳ)的萃取行为,以及两相混合振荡时间、水相硝酸浓度和有机相萃取剂浓度对U(Ⅵ)、Pu(Ⅳ)萃取分配比的影响。硝酸的萃取实验结果表明,4-EthoxyBenzoDODA(KH=0.14)比BenzoDODA(KH=0.44)碱性弱,更有利于选择萃取离子势较强的Pu(Ⅳ)。对U(Ⅵ)、Pu(Ⅳ)的萃取实验表明,Pu(Ⅳ)对U(Ⅵ)的分离因子最高可达6.9,Pu(Ⅳ)对Eu(Ⅲ)的分离因子最高可达223。采用斜率法分析了4.0 mol/L HNO3浓度下U(Ⅵ)萃合物的组成,主要为UO2(NO3)2·L)、Pu(Ⅳ)(Pu(NO3)4·L和Pu(NO3)4·L2共存。使用硝酸肼或者硝酸羟胺等还原反萃剂,可以将负载有机相中98%的Pu反萃至水相中。结果表明,4-EthoxyBenzoDODA对Pu(Ⅳ)具有一定的选择性。  相似文献   

12.
吡啶酰胺的合成及萃取U(Ⅵ)的性能研究   总被引:2,自引:0,他引:2  
合成了一种新型酰胺类鳌合剂,用IR,^1H NMR及气相色谱-质谱等方法对其结构进行了表征。研究了以二氯乙烷为溶剂时,该萃取剂在硝酸介质中对铀(Ⅵ)的萃取行为,考察了稀释剂、萃取剂浓度、酸度、温度及盐析剂离子强度对萃取分配比的影响。同时对萃合物的化学组成及萃取机理进行了分析和讨论。研究结果表明,吡啶酰胺对铀(Ⅵ)的萃取属中性配合萃取,形成1:1的配合物,在萃取过程中没有形成三相。  相似文献   

13.
237Np半衰期较长,具有较高的生物毒性,使其成为高放废液非α化过程中重点关注的核素之一。本工作采用新型的N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA)为萃取剂,研究了萃取剂浓度、水相初始硝酸浓度和温度等因素对DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的影响。结果表明:随着DMDODGA浓度和水相初始硝酸浓度的增加,Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的分配比均增大。萃取剂浓度小于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶2型萃合物;萃取剂浓度大于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶3型萃合物。萃取剂浓度在0.1~1.0 mol/L范围内,DMDODGA与Np(Ⅴ)、Np(Ⅵ)均生成1∶2型萃合物。DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的ΔH分别为-59.55、-22.02、-31.40 kJ/mol,3个反应均为放热反应,降低温度有利于反应的正向进行。  相似文献   

14.
以40 %辛醇/煤油为稀释剂,研究了3种荚醚:N,N,N',N'-四丁基-3-氧-戊二酰胺(TBOPDA)、N,N,N',N'-四异丁基-3-氧-戊二酰胺(TiBOPDA)和N,N,N',N'-四丁基-3,6-二氧-辛二酰胺(TBDOODA)在硝酸介质中对Am(Ⅲ)和Eu(Ⅲ)的萃取热力学.TBOPDA、TiBOPDA和TBDOODA萃取镅的反应焓变分别为:-80.54、-81.99和-75.88 kJ/mol;求出了萃取反应自由能和熵值的变化;观测了不同平衡酸度下萃入有机相中金属离子的可见吸收光谱.研究结果表明,水相酸度在一定范围内变化时,有机相中金属离子的吸收峰位置和形状没有改变,说明萃取机理在一定酸度内不变.萃合物红外光谱的测量结果表明,萃取金属离子后,3种荚醚的羰基吸收峰均发生了显著位移,TBOPDA和TBDOODA的醚氧键位移分别为6 cm-1和3 cm-1.  相似文献   

15.
合成了新型酰胺类萃取剂N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)和N,N-二己基辛酰胺(DHOA),研究了以正十二烷为溶剂时,该萃取体系在硝酸介质中对碱土金属的萃取行为,考察了萃取体系变化、酸度、金属离子强度、盐析剂离子强度及温度对萃取分配比的影响.同时对萃合物的化学组成及萃取机理进行了分析和讨论.研究结果表明:TODGA与M(Ⅱ)形成的萃合物分子为M(N03)2·2TODGA(org);在293 K时,TODGA萃取Sr(Ⅱ)的△G=(-2.08±0.06)kJ/mol,△H=(-24.30±1.45)kJ/mol,△S=(-75.80±4.74)J/(mol· K).在萃取过程中没有形成三相,提出了从高放废液(HLLW)中分离回收Sr的初步方案.  相似文献   

16.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Sr(Ⅱ)的动力学,考察了搅拌转速、界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130r/min以下时,0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的过程为扩散控制类型,在搅拌转速为150r/min以上时,则可能属于化学反应控制的动力学控制模式;(2) 求得了在(170±2)r/min、温度为(25±0.1)℃时0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率方程: r0= ((dcorg(M)/dt) |t=0)=k• (S/V)c0.91aq,0(Sr)c0.73aq,0(HNO3)c0.87org,0 (TODGA) 在25℃下,求得表观萃取速率常数k=(22.5±2.5)×10-3mol-1.51•L1.51•min-1•cm;(3) 0.1 mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率随着温度的升高而增大,求得表观萃取活化能Ea(Sr(Ⅱ))=(24.3±0.7)kJ/mol。  相似文献   

17.
合成了N,N′-二乙基-N,N′-二苯基-[2,2′-联吡啶]-6,6′-二硫代酰胺(Et-Ph-BCTABipy)萃取剂,并利用13C NMR和1H NMR对其进行了表征;研究了相接触时间、萃取剂浓度、水相初始酸度和Pd2+浓度等因素对Et-Ph-BCTABipy萃取Pd2+性能的影响,利用摩尔比法确定了Et-Ph-BCTABipy与Pd2+所形成的配合物组成;同时,在Ln(Ⅲ)与Pd2+共存体系中研究了Et-Ph-BCTABipy对Pd2+的萃取选择性。结果表明:Et-Ph-BCTABipy在HNO3体系中对Pd2+具有较强的萃取性能和较高的萃取选择性;萃取过程中Et-Ph-BCTABipy与Pd2+以1∶2的比例结合,其萃取平衡常数Kex=3.42×106。  相似文献   

18.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为代表的酰胺荚醚类萃取剂可以有效萃取高放废液中的An(Ⅲ)和Ln(Ⅲ),为防止Zr4+、Pd2+等裂片元素萃入有机相,通常需要加入H2C2O4作为水相络合剂,目前,H2C2O4对TODGA萃取Ln(Ⅲ)的影响尚未报道。本工作研究了HNO3、H2C2O4浓度对TODGA或TODGA+TBP体系萃取Nd3+的影响,同时测定了有机相中的H2C2O4浓度,并用紫外-可见吸收光谱分析了有机相中的H2C2O4与有机相中Nd3+的配位情况。研究结果表明:HNO3浓度在1.0~3.0 mol/L的范围内,Nd3+的分配比D(Nd3+)随HNO3浓度的增加而增加;H2C2O4浓度在0.1~0.5 mol/L的范围内,D(Nd3+)随H2C2O4浓度的增加而增加。HNO3浓度在1.0~3.0 mol/L的范围内,萃入有机相中H2C2O4浓度随HNO3浓度的增加而减小,且存在于有机相中的H2C2O4并未与有机相Nd3+配位。  相似文献   

19.
以正十二烷作为稀释剂,研究了N,N'-二(2-乙基己基)二甘酰胺酸(HDEHDGA,简称HL)萃取剂对硝酸介质中Dy(Ⅲ)离子的萃取性能。结果表明:该萃取剂对Dy(Ⅲ)有良好的萃取性能,在硝酸浓度为0.3~4.0mol/L时,Dy(Ⅲ)的分配比(D(Dy))随水溶液中平衡酸度的增加先减小后增大,在HNO_3浓度大约为1.0mol/L时,分配比最小。萃取分配比随水相硝酸浓度变化的关系表明,HDEHDGA萃取Dy(Ⅲ)的机理随硝酸浓度变化而不同。从3.0mol/L HNO_3中萃取Dy(Ⅲ)的分配比与萃取剂浓度及硝酸根浓度的关系表明,萃取过程中HDEHDGA主要以中性萃取剂形式与Dy(Ⅲ)配位,萃取反应方程式可能为:Dy(Ⅲ)+2HL+3NO_3~-=Dy(Ⅲ))(HL)_2(NO_3)_3该反应为放热反应,反应的热焓为-63.38kJ/mol,降低萃取温度有利于HDEHDGA对Dy(Ⅲ)的萃取。  相似文献   

20.
研究了HNO3介质中甲基膦酸二甲庚酯(DMHMP)对Pu(Ⅳ)的萃取性能,考察了DMHMP浓度、NO-3浓度、HNO3浓度以及温度对Pu(Ⅳ)分配比的影响。确定了DMHMP萃取Pu(Ⅳ)的萃合物的组成为Pu(NO3)4·2DMHMP,其萃取反应方程式为:■其中Pu(Ⅳ)与NO-3形成中性分子,再与DMHMP结合成为中性配合物进入有机相。在实验范围内Pu(Ⅳ)分配比与DMHMP浓度的平方、NO-3浓度的四次方成正比,萃取过程为放热反应,反应的焓变为-34.46 kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号