共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
针对现有的个性化隐私匿名技术不能很好地解决数值型敏感属性容易遭受近邻泄漏的问题,提出了一种基于聚类技术的匿名模型——(εi,k)-匿名模型.该模型首先基于聚类技术将按升序排列的敏感属性值划分到几个值域区间内;然后,提出了针对数值型敏感属性抵抗近邻泄漏的(εi,k)-匿名原则;最后,提出了一种最大桶优先算法来实现(εi,k)-匿名原则.实验结果表明,与已有的面向数值型敏感属性抗近邻泄漏方案相比,该匿名方案信息损失降低,算法执行效率提高,可以有效地降低用户隐私泄露风险. 相似文献
3.
4.
多维敏感属性隐私保护数据发布方法 总被引:2,自引:0,他引:2
在匿名数据发布中,当敏感属性为多维时,攻击者有可能能够获取一维或几维敏感属性信息,并且结合准标识符信息对其他敏感属性进行推理攻击。针对此问题提出(Dou-l)-匿名模型,更好地保护了敏感信息。基于多维桶和分解思想,提出(Dou-l)-匿名算法,使得即便攻击者掌握了部分敏感数据,仍然能较好地保护其他敏感属性数据的隐私安全性。实际数据实验证明,算法可以较好地均衡发布数据的安全性和可用性。 相似文献
5.
针对现有k-匿名方法直接用于多敏感属性数据发布中存在大量隐私泄露的问题,提出一种基于语义相似和多维加权的联合敏感属性隐私保护算法。该算法通过语义相似性反聚类思想和灵活设置多敏感属性值的权值,实现了联合敏感属性值和语义多样性分组的隐私保护,并根据应用需要为数据提供不同的隐私保护力度。实验结果表明,该方法能有效保护数据隐私,增强了数据发布的安全性和实用性。 相似文献
6.
目前大多数个性化隐私保护算法,对敏感属性的保护方法可以分为两种:一种是对不同的敏感属性设置不同的阈值;另一种是泛化敏感属性,用泛化后的精度低的值取代原来的敏感属性值。两种方法匿名后的数据存在敏感信息泄露的风险或信息损失较大,以及数据可用性的问题。为此,提出个性化(p,α,k)匿名隐私保护算法,根据敏感属性的敏感等级,对等价类中各等级的敏感值采用不同的匿名方法,从而实现对敏感属性的个性化隐私保护。实验表明,该算法较其他个性化隐私保护算法有近似的时间代价,更低的信息损失。 相似文献
7.
在K-匿名模型的基础上提出了(s,d)-个性化K-匿名隐私保护模型,该模型能很好地解决属性泄漏问题,并通过实验证明了该模型的可行性。 相似文献
8.
9.
目前动态数据的隐私保护引起了人们的广泛关注。m-invariance概念的提出,比较好地解决了动态类别敏感属性的数据隐私保护问题,但对于动态数值敏感属性却未取得任何进展。描述了动态数值敏感属性的数据隐私保护问题,提出了解决该问题的m-increment概念及其泛化算法,并通过实验数据说明了算法的实用性和效率。 相似文献
10.
11.
在保护数据隐私的匿名技术中,为解决匿名安全性不足的问题,即匿名过程中因计算等价类质心遭受同质性和背景知识攻击造成的隐私泄漏,提出了一种基于差分隐私的数据匿名化隐私保护方法,构建了基于差分隐私的数据匿名化隐私保护模型;在利用微聚集MDAV算法划分相似等价类并在匿名属性过程中引入SuLQ框架设计得到ε-MDAV算法,同时选用Laplace实现机制合理控制隐私保护预算。通过对比不同隐私保护预算下可用性和安全性的变化,验证了该方法可以在保证数据高可用性的前提下有效地提升数据的安全性能。 相似文献
12.
13.
群智感知网络中现有隐私保护算法对所有位置采用相同的隐私保护策略,导致位置隐私或保护过度或保护不足,且获得的感知数据精度较低。针对这一问题,提出了一种满足用户个性化隐私安全需求的位置隐私保护算法。首先,根据用户的历史移动轨迹,挖掘用户对不同位置的访问时长、访问频率以及访问的规律性来预测位置对用户的社会属性;然后,结合位置的自然属性,预测用户—位置的敏感等级;最后,结合用户在不同的位置有不同的隐私安全需求的特点,设置动态的隐私判定方案,在每个位置选敏感度低的用户参与感知任务,以确保用户在隐私安全的前提下,贡献时空相关性精确高的感知数据。仿真结果表明,该算法在提高隐私保护水平的同时还提高了感知数据的精度。 相似文献
14.
为加强隐私保护和提高数据可用性,提出一种可对混合属性数据表执行差分隐私的数据保护方法。该方法首先采用ICMD(insensitive clustering for mixed data)聚类算法对数据集进行聚类匿名,然后在此基础上进行-差分隐私保护。ICMD聚类算法对数据表中的分类属性和数值属性采用不同方法计算距离和质心,并引入全序函数以满足执行差分隐私的要求。通过聚类,实现了将查询敏感度由单条数据向组数据的分化,降低了信息损失和信息披露的风险。最后实验结果表明了该方法的有效性。 相似文献
15.
针对数据服务器不可信时,直接收集可穿戴设备多维数值型敏感数据有可能存在泄露用户隐私信息的问题,通过引入本地差分隐私模型,提出了一种可穿戴设备数值型敏感数据的个性化隐私保护方案。首先,通过设置隐私预算的阈值区间,用户在区间内设置满足个人隐私需求的隐私预算,同时也满足了个性化本地差分隐私;其次,利用属性安全域将敏感数据进行归一化;最后,利用伯努利分布分组扰动多维数值型敏感数据,并利用属性安全域对扰动结果进行归一化还原。理论分析证明了该算法满足个性化本地差分隐私。实验结果表明该算法的最大相对误差(MRE)明显低于Harmony算法,在保护用户隐私的基础上有效地提高了不可信数据服务器从可穿戴设备收集数据的可用性。 相似文献
16.
时空k-匿名由于适应移动性环境以及实现更为简单方便等特点,是当前LBS领域中被使用最广泛的模型。由于LBS在线及动态的特性,使传统的数据变形或重构方法不足以对抗从大量时空k-匿名数据集挖掘到的关联规则的用户隐私攻击。针对以上问题提出了基于敏感项集动态隐藏的用户隐私保护方法(SIDH):感知敏感规则对应项集空间的正负边界,增量扩展原始快照查询匿名集数据,以敏感项集的动态隐藏净化敏感关联规则,最终实现用户隐私保护。通过对2612辆出租车的GPS数据生成的匿名集进行敏感项集隐藏实验,结果表明:SIDH方法隐藏敏感项集的数量和速度明显高于传统匿名方法,并且不会新增敏感项集。因此SIDH方法更能有效应对匿名集敏感关联规则的推理攻击,副作用较小。 相似文献
17.
针对用户终端数据卸载过程中难以同时实现高隐私安全和低时间消耗的目标,提出了一种具有隐私保护的边缘计算高效数据卸载方法.首先,利用时间计算模型和隐私熵值分别将用户终端时间消耗和数据隐私安全程度进行量化,并建立一个多目标优化问题模型;其次,利用改进强度帕累托进化算法对时间消耗和隐私熵值进行联合优化;最后,利用基于熵权法的多属性决策方法选取最优的时间消耗和隐私熵组合策略.在多终端用户多计算任务的边缘计算下展开实验研究和对比分析,结果表明,该方法在降低传输时间的基础上还增强了数据卸载传输的安全性. 相似文献
18.