首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用OM、SEM、XRD、EBSD和室温拉伸试验机等研究了CSP热轧TRIP钢中间缓冷时间及贝氏体等温时间对组织和力学性能的影响。结果表明,随着中间缓冷时间的延长,试验钢中的铁素体和残余奥氏体体积分数增加,贝氏体体积分数减少;抗拉强度基本不变,屈服强度逐渐降低,断后伸长率和强塑积变化不明显。中间缓冷时间为6 s时,可满足CSP产线的要求。对贝氏体相变时间的研究表明,当等温时间为15 min时,试验钢中的残余奥氏体主要分布于铁素体/铁素体界面、铁素体/贝氏体界面以及贝氏体中,体积分数约为7.1%,表现出良好的TRIP效应。其抗拉强度、屈服强度、断后伸长率和强塑积分别达到744.0 MPa、522.5 MPa、29.3%和21.8 GPa·%,力学性能最优。当等温时间延长至50 min时,试验钢中的贝氏体含量增加,残余奥氏体体积分数减少至2.7%,强塑积明显下降。  相似文献   

2.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350℃保温100~1 000 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温时间对超高强冷轧相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成。贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温时间增加,促进了过冷奥氏体向贝氏体转变,固溶C原子充分向剩余奥氏体中富集。因此,过冷奥氏体中的平均碳含量增加,使得冷轧TRIP钢残余奥氏体分数提高,马氏体体积分数下降。贝氏体等温时间由100 s延长至1 000 s时,冷轧TRIP钢屈服强度由596 MPa提高至692 MPa,抗拉强度由1 455 MPa降低至1 138 MPa,屈强比由0.41提高至0.61,伸长率(A80)由6.3%提高至18.9%。贝氏体等温时间为1 000 s时,冷轧超高强TRIP钢具有优良的综合力学性能,最大强塑积达到21 510 MPa·%。  相似文献   

3.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350~410℃保温600 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温温度对超高强相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成;贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温温度增加,固溶C原子扩散系数提高,促进残余奥氏体中碳化物的析出。因此,奥氏体中的平均固溶C含量降低,使得TRIP钢残余奥氏体分数降低,马氏体体积分数增加。贝氏体等温温度由350℃增加至410℃时,TRIP钢屈服强度由720 MPa降低至573 MPa,抗拉强度由1 195 MPa提高至1 312 MPa,伸长率A_(80)由17.8%降低至12.5%。贝氏体等温温度为350℃时,冷轧TRIP钢具有优良的综合力学性能,强塑积达到21 270 MPa·%。  相似文献   

4.
 为了实现低硅含铝热轧TRIP钢的工业应用,以低硅含铝热轧TRIP钢为研究对象,采用扫描电子显微镜、透射电子显微镜、拉伸试验和X射线衍射等试验方法,研究了不同等温时间对试验钢显微组织和力学性能的影响。结果表明,试验钢的显微组织主要由多边形铁素体、贝氏体铁素体和残余奥氏体组成,随着等温时间的增加,板条贝氏体的体积分数升高,粒状贝氏体的体积分数降低;当等温时间为20 min时,试验钢的综合力学性能最佳,抗拉强度为732.25 MPa,断后伸长率为36%,强塑积为26.36 GPa·%;残余奥氏体的体积分数和碳含量先升高后降低,等温时间为20 min时试验钢表现出较强的加工硬化行为。  相似文献   

5.
在实验室用Gleeble3500热模拟试验机制备了一种无Si TRIP钢.利用拉伸试验机、扫描电镜、透射电镜、X射线衍射以及热膨胀仪对其力学性能、微观组织和相变规律进行研究,在此基础上分析了贝氏体相变温度和时间对力学性能和残余奥氏体的影响.无Si TRIP钢呈现出良好的整体力学性能,抗拉强度分布在740~810 MPa,延伸率均在25%以上,最高可达32%以上;贝氏体等温温度为420℃时能获得最佳的综合力学性能,抗拉强度随贝氏体相变时间增加而下降,延伸率随之上升,而屈服强度没有显著变化.无Si TRIP制的铁素体晶粒大小约为3~4μm,比含Si TRIP钢铁素体晶粒细小;残余奥氏体的体积分数在8%~10%,比含Si TRIP钢低约3%;420℃保温300 s后贝氏体相变基本结束,而碳的扩散仍然在进行;无Si TRIP钢贝氏体相变速率比含Si TRIP钢快,贝氏体相变总量也更多.   相似文献   

6.
采用盐浴热处理方法配合性能检测及显微组织分析方法研究了热处理工艺对含钒冷轧TRIP钢组织性能的影响,结果表明试验钢在所采用的热处理工艺下其抗拉强度均达到700 MPa,且在780℃×60 s+400℃×180 s工艺下获得最佳综合性能,屈服强度、抗拉强度、断后伸长率、强塑积分别为514 MPa、738 MPa、29%、21 402 MPa·%;随着两相区退火温度的升高,两相区奥氏体所占的体积分数也越高,使最终组织中贝氏体及马氏体等强化相含量增多,造成试验钢强度上升、塑性下降;钒在试验钢中对残余奥氏体的积极作用并未体现,可能与退火时间较短和贝氏体区等温时钒碳(氮)化物重新析出消耗残余奥氏体中碳原子造成其含量及稳定性下降有关。  相似文献   

7.
贝氏体区等温时间对低硅TRIP钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究了0.15C-1.5Mn-1.5Al-0.3Si TRIP钢820℃2 min加热后快冷至450℃盐浴中保温5~300s空冷的组织和力学性能。结果表明,随在贝氏体转变区450℃等温时间的增加,该钢的屈服强度和伸长率增加,抗拉强度降低,等温时间60s时强塑积最佳,为23 000MPa%;等温时间≤60s时随等温时间增加钢中残余奥氏体含量增加,>60s时随等温时间的增加钢中残余奥氏体含量降低,60s时钢中残余奥氏体达到最高值,为14%。  相似文献   

8.
唐正友  丁桦  李龙  李卫 《钢铁》2006,41(11):58-62
通过两相区退火和贝氏体转变区等温处理,研究了铌含量和贝氏体等温处理温度对低碳 TRIP钢(w(Mn)=1.38%,w(Si)=0.6%,w(Al)=0.5%)组织和力学性能的影响.实验结果表明:增加铌含量,实验钢的残余奥氏体量减少,抗拉强度和屈服强度增加;当铌的质量分数为0.014%时,实验钢的伸长率和强塑积较高;贝氏体等温处理温度为400 ℃时,实验钢的残余奥氏体量较多,力学性能较好.  相似文献   

9.
吴迪  李壮  吕伟 《钢铁》2012,47(8):36-38,40,42
通过实验室热轧机组的控轧控冷试验,研究了控轧控冷参数对超高强铁素体/贝氏体双相钢组织性能的影响。结果表明,采用不同温度终轧,轧后不同方式冷却,抗拉强度几乎都在1 000MPa以上,屈强比在0.54~0.62之间,伸长率在13%~17%之间。铁素体晶粒随终轧温度降低和冷却速度加快而细化;终冷温度降低,贝氏体量增多。经800℃终轧后层流冷却至560℃左右空冷,由于铁素体晶粒细化,组织中大量的粒状贝氏体、无碳化物贝氏体、少量的孪晶马氏体以及残余奥氏体的存在使抗拉强度达1 130MPa,伸长率达16%,强塑积达到18 080MPa.%的最高值。控轧控冷获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织,使试验钢具有了优异的力学性能。  相似文献   

10.
通过力学性能测试及OM、SEM、EBSD、XRD显微组织分析,研究了正火终冷温度对U26Mn2Si2CrNiMo贝氏体奥氏体钢力学性能的影响。结果表明,当正火终冷温度为330℃时,其屈服强度达到1 246 MPa,抗拉强度达到1 335 MPa,伸长率为14.4%,室温冲击功为84 J,-40℃低温冲击功为38 J。随着正火终冷温度的降低,其屈服强度有所降低,但是抗拉强度增加,同时其伸长率和冲击功均逐渐降低。随正火终冷温度的降低,残余奥氏体体积分数逐渐降低,大角度晶界比例增加,残余奥氏体的取向稳定性和机械稳定性均降低,当温度降低至300℃时,残余奥氏体消失。同时低的正火终冷温度将增大贝氏体铁素体间的应变梯度,晶界失去了对裂纹扩展的阻碍作用,这些因素的协同作用导致综合力学性能的降低。  相似文献   

11.
通过Gleeble-1500热模拟压缩试验,借助光学显微镜、扫描电镜、X射线衍射及拉伸试验等,研究一种低碳Mn-Si钢在基于热轧动态相变的热轧TRIP钢工艺和基于贝氏体等温处理工艺下的组织与力学性能,比较了通过两种工艺获得的不同复相组织状态对材料的加工硬化能力的影响.结果表明:实验钢在基于动态相变的热轧TRIP钢工艺下获得了以细晶铁素体为基体和贝氏体、残余奥氏体组成的复相组织,而在基于贝氏体等温处理工艺下得到了以板条贝氏体为基体和残余奥氏体组成的复相组织,前者中残余奥氏体含量较高且其碳含量也较高.实验钢具有以板条贝氏体为基体的复相组织时屈服强度和抗拉强度较高;但由于残余奥氏体稳定性较差,实验钢的加工硬化能力较弱,导致其均匀延伸率和总延伸率较小.   相似文献   

12.
 Mechanical properties and microstructure in high strength hot dip galvanizing TRIP steel were investigated by optical microscope (OM), transmission electron microscope (TEM), X-ray diffraction (XRD), dilatometry and mechanical testing. On the heat treatment process of different intercritical annealing (IA) temperatures, isothermal bainitic transformation (IBT) temperatures and IBT time, this steel shows excellent mechanical properties with tensile strength over 780 MPa and elongation more than 22%. IBT time is a crucial factor in determining the mechanical properties as it confirms the bainite transformation process, as well as the microstructure of the steel. The microstructure of the hot dip galvanizing TRIP steel consisted of ferrite, bainite, retained austenite and martensite during the short IBT time. The contents of ferrite, bainite, retained austenite and martensite with different IBT time were calculated. The results showed that when IBT time increased from 20 to 60 s, the volume of bainite increased from 14.31% to 16.95% and the volume of retained austenite increased from 13.64% to 16.28%; meanwhile, the volume of martensite decreased from 7.18% to 1.89%. Both the transformation induced plasticity of retained austenite and the hardening of martensite are effective, especially, the latter plays a dominant role in the steel containing 7.18% martensite which shows similar strength characteristics as dual-phase steel, but a better elongation. When martensite volume decreases to 1.89%, the steel shows typical mechanical properties of TRIP, as so small amount of martensite has no obvious effect on the mechanical properties.  相似文献   

13.
A new transformation induced plasticity (TRIP) steel containing high volume fraction of martensite was produced by austempering heat treatment cycle. Microstructure and tensile properties of this TRIP steel were investigated and compared to those of a dual phase (DP) steel with high martensite volume fraction. Microstructural analysis showed a mixture of ferrite, bainite, retained austenite and about 25–30 vol% of martensite in the TRIP steel. As a result of the strain induced transformation of retained austenite to martensite, the TRIP steel showed a strength elongation balance of 86% higher than that for the DP steel. In comparison to the commercial TRIP780 steel, the current TRIP steel showed a 15% higher ultimate tensile strength value while maintaining the same level of ductility. TRIP steel also had a larger work hardening exponent than DP steel at all strains.  相似文献   

14.
 The controlled cooling technology following hot rolling process is a vital factor that affects the final microstructure and mechanical properties of the hot-rolled transformation induced plasticity (TRIP) steels. In the present study, low alloy C-Si-Mn TRIP steel was successfully fabricated by hot rolling process with a 450 hot rolling mill. To maximize the volume fraction and stability of retained austenite of the steel, two different cooling methods (air-cooling and ultra-fast cooling “AC-UFC” and ultra-fast cooling, air-cooling and ultra-fast cooling “UFC-AC-UFC”) were conducted. The effects of the cooling method on the microstructure of hot-rolled TRIP steel were investigated via optical microscope, transmission electron microscope and conversion electron Mssbauer spectroscope. The mechanical properties of the steel were also evaluated by conventional tensile test. The results indicated that ferrite and bainite in the microstructure were refined with the cooling method of UFC-AC-UFC. The morphology of retained austenite was also changed from small islands distributing in bainite district (obtained with AC-UFC) to granular shape locating at the triple junction of the ferrite grain boundaries (obtained with UFC-AC-UFC). As a result, the TRIP steel with a content of retained austenite of 1152%, total elongation of 32% and product of tensile strength and total elongation of 27552 MPa·% was obtained.  相似文献   

15.
The microstructure evolution of 0.20C-2.00Mn-2.00Si steel treated by the thermomechanical process to manufacture hot-rolled, transformation-induced plasticity (TRIP) steel based on dynamic transformation of undercooled austenite was investigated using a Gleeble 1500 (Dynamic Systems, Inc., Poestenkill, NY) hot simulation test machine in combination with light microscope (LM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The mechanical properties of this steel with different multiphase microstructures were also analyzed using room-temperature tensile tests. The results indicated that the multi-phase microstructures consisting of fine-grained ferrite with a size of 1–3 μm, bainite packets, and retained austenite and martensite were formed for the used steel by a thermo-mechanical process involving dynamic transformation of undercooled austenite, controlled cooling, isothermal bainite treatment and water-quenching. With the increase in the strain of hot deformation of undercooled austenite, the fraction of ferrite increased, that of bainite decreased, and that of martensite increased. At the same time, the fraction of retained austenite (RA), as well as the carbon content of RA, first increased and then decreased. For the used steel treated by such process, the tensile strength is about 1200 MPa with a total elongation of about 20 pct, and the product of tensile strength and total elongation can be up to 25,000 MPa × pct.  相似文献   

16.
Thestudies[1,2 ] havestatedthatretainedausteniteinadual phasesteelistransformedtomartensiteundertensilestrain .Suchstrain inducedtransformationofretainedaustenitecanenhanceductilityofsteelwhentheretainedausteniteisratherstableagainststraining[3 ] .Basedonthi…  相似文献   

17.
The effect of additions of Nb, Al and Mo to Fe‐C‐Mn‐Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X‐ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise ~ 50 % of polygonal ferrite, 7 ‐12 % of retained austenite, non‐carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure‐property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C‐Si‐Mn‐Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb‐Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C‐Si‐Mn‐Nb steel leads to a good combination of strength (~ 940 MPa) and elongation (~ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ~7 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb‐Mo‐Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb‐Mo‐Al steel appears to be more granular than in the Nb‐Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.  相似文献   

18.
 The effect of the run-out table cooling patterns on the microstructure and mechanical properties of Nb microalloyed steel plates was investigated by hot rolling experiment. The results showed that the mixed microstructure containing ferrite, bainite and significant amounts of retained austenite can be obtained through three kinds of cooling patterns on the run-out table under the same hot rolling condition. Three kinds of cooling patterns possess different austenite transformation kinetics, which leads to variations in microconstituent characteristics. The yield strength increases, the tensile strength decreases and the total elongation tends to increase as the cooling patterns Ⅰ, Ⅱ and Ⅲ were applied respectively. The yield strength, the total elongation and the product of tensile strength and ductility reach the maximum values (547 MPa, 37.2% and 28384 MPa·%, respectively) for the steel plate processed by cooling pattern Ⅲ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号