首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
刘锦锐  加明 《冶金分析》2021,41(8):76-83
准确、快速地测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅等19种微量杂质元素,对光致发光材料钼酸钙的质量判定有重要意义。选择过氧化氢-盐酸溶解体系对样品进行前处理;采用钼基体匹配法消除基体效应对测定的影响;通过选择合适的谱线消除光谱干扰;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定光致发光材料钼酸钙中上述19种微量杂质元素。方法中各待测元素校准曲线的线性相关系数均大于0.999 0;方法中各元素检出限为0.2~4.4 μg/g。按照实验方法测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅,结果的相对标准偏差(RSD,n=8)为0.61%~6.8%;加标回收率为95%~105%。按照实验方法测定实验室内控样品,测定结果与电感耦合等离子体质谱法(ICP-MS)测定结果一致。  相似文献   

2.
李刚  陈苏  李艳  张娟萍  马晓龙 《冶金分析》2012,32(11):56-60
使用电感耦合等离子体原子发射光谱法对核级锆合金中4种常量元素及13种痕量元素进行测定。通过用高纯海绵锆及主合金元素进行基体匹配和选择合适的光谱线作被测元素分析线,成功地测定了核级锆合金中常量元素锡、铌、铁、铬和痕量元素铝、钴、铜、钼、镁、锰、镍、铅、硅、钽、钛、钒、钨。对NIST的360b锆合金中锡、铁、铬、镍的测定,其测定结果与标准物质证书给出的标准值相一致。对核级锆合金进行加标回收试验,结果表明,除钽的回收率偏低和铝、铅的回收率偏高外,铌、钴、铜、钼、镁、锰、硅、钛、钒、钨的回收率在92%~108%之间。本法的测定结果稳定,3天测定结果的相对标准偏差(RSD)均在6%以下,能满足西屋认证标准(RSD<10%)的要求。  相似文献   

3.
建立了测定铀铌陶瓷材料中铝、钡、钙、钴、铬、铜、镍、锡、铁、铪、镁、锰、钼、钛和钒15个痕量元素的电感耦合等离子体原子发射光谱法。应用磷酸三丁酯为固定相,聚偏氟乙烯粉为支持体的反相色层柱萃取技术,使铀与铌及杂质元素分离。试验选择5 mol/L硝酸为淋洗液,淋洗速度在0.5~1.0 mL/min时,可有效地将被测杂质元素与铀分离。基体铌引起的谱线干扰和背景干扰分别采用基体匹配和背景校正方法克服。本法的加标回收率在93.6%~108.4%范围,相对标准偏差从2.6%到8.5%。  相似文献   

4.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

5.
周伟  贾云海 《冶金分析》2007,27(10):1-1
提出了电感耦合等离子体原子发射光谱法测定锌及锌合金中铝、铋、钙、镉、钴、铬、铜、铁、镁、锰、钼、镍、铅、锡、钛和钒16种元素的分析方法,对仪器各项参数进行优化,采用基体匹配办法克服基体干扰,通过选择合适的分析线和背景校正消除共存元素间干扰。方法应用于实际样品分析,测定结果与认定值或其他方法的测定值相符。  相似文献   

6.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

7.
用微波消解技术,以混合酸(盐酸-硝酸-硫酸-双氧水)消解磷酸铁锂样品,建立了电感耦合等离子体质谱法(ICP-MS)测定磷酸铁锂中钠、镁、铝、钙、钛、铬、锰、钴、镍、铜、锌、铅等12种微量杂质元素的分析方法。确定了最佳实验条件如下:采用普通模式测定元素铅,氦碰撞模式测定钠、镁、铝、钛、铬、锰、钴、镍、铜、锌,氢气反应模式测定钙;碰撞气He气流速为5.6 mL/min,反应气H2的流速为6.2 mL/min;钠、镁、铝、钙、钛采用钪为内标进行基体校正,铬、锰、钴、镍、铜、锌采用铱进行校正,铅采用铋进行校正。方法检出限在4.5~28.9 ng/L之间。采用实验方法对磷酸铁锂实际样品中各元素进行测定,结果的相对标准偏差(RSD,n=11)在0.6%~1.9%之间,加标回收率为94%~107%。方法测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比分析,结果基本一致。  相似文献   

8.
采用冷等离子体模式, 以57Fe为内标, 建立了单点激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)测定钢铁材料中各元素的方法。氧化铝砂纸进行样品表面处理会引入玷污;样品表面粗糙度对结果影响不大;除钛外, 样品直径对结果影响不明显;砷、锡的分馏因子(FI)分别为0.85和0.83, 有分馏效应, 其他元素的FI在0.93~1.05之间, 没有分馏效应;采用不同系列标准物质进行曲线拟合, 除硅、磷、硫外, 其他元素的相关系数都大于0.95, 基体效应不明显;方法能实现用34S测定硫, 但不能测定碳。建立了测定低合金钢及其钢丝中铝、硅、磷、硫、钛、钒、铬、锰、钴、镍、铜、砷、钼和锡等元素的方法, 标准物质的测定值与认定值基本吻合;精密度考察发现, 各元素的RSD(n=5)为0.7%~8.7%(钛的RSD 达17%)。方法还适用于其他钢铁材料中钒、铬、锰、钴、镍、钼和锡等元素的测定, 有实际应用价值。  相似文献   

9.
王丹  孙莹  马洪波 《冶金分析》2018,38(2):42-46
采用盐酸、硝酸溶解样品,再加硫磷混酸冒烟,冒烟期间滴加硝酸使碳化物完全溶解,采用基体匹配法配制标准溶液系列消除基体效应的影响,选择W 207.911nm、Ni 231.604nm、Fe 259.940nm、V 311.071nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钴铬钨合金中钨、镍、铁、钒。钨的质量分数在0.1%~30%范围内,镍、铁、钒的质量分数在0.1%~10%范围内各元素质量分数与对应的发射强度呈线性,校准曲线线性相关系数不小于0.9997;方法中各元素检出限为0.0008%~0.0033%(质量分数)。按照实验方法测定两个钴铬钨合金中钨、镍、铁、钒,结果的相对标准偏差(RSD,n=6)为1.0%~1.9%;并与微波消解-电感耦合等离子体原子发射光谱法的测定结果进行对比,测定结果基本一致。  相似文献   

10.
在这项工作中,建立了ICP-MS方法(微波消解-电感耦合等离子体质谱法)测定水产品中的痕量元素。用HNO_3-HCl-H_2O系统消化样品,然后添加金标准溶液以除去系统中的Hg储存。Co/ors混合模式电感耦合等离子体质谱法(ICP-MS)用于测定水产品中的28种微量元素锂、铍、铝、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、硒、锶、钼、银、镉、锡、锑、碲、钡、汞、铊、铅、铀。回收率为85.3%~110%,标准偏差小于10%。28个项目的检出限为0.001~0.022mg kg~(-1)。该方法适用于在实验室水产品中同时实施28个跟踪设备。  相似文献   

11.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

12.
选择水-盐酸-氢氟酸-硝酸混合酸体系溶解样品,控制雾化气流速为0.65 L/min,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定TG6钛合金中镁、钒、铬、铁、钴、铜、锰、钼和钨的方法。考察了钛基体和共存元素对待测元素的影响,确定各待测元素分析线为Mg 285.2 nm、V 310.2 nm、Cr 283.5 nm、Fe 259.9 nm、Co 238.8 nm、Cu 213.5 nm、Mn 257.6 nm、Mo 202.0 nm、W 207.9 nm。采用基体匹配法消除了基体影响。方法检出限为0.000 3~0.005 7 μg/mL。采用方法对实际样品分析,结果的相对标准偏差为0.26%~13.6%,加标回收率为93%~110%。按照TG6钛合金的名义成分Ti-5.8Al-4Sn-4Zr-0.5Ta-0.7Nb-0.4Si-0.06C配制模拟TG6钛合金样品,实验方法测得结果与理论值基本一致。  相似文献   

13.
锰铁样品经微波消解后,选择327.395、231.604、177.434、334.941、309.310 nm波长的光谱线分别作为铜、镍、磷、钛、钒的分析线,用电感耦合等离子体发射光谱法测定了锰铁样品中铜、镍、磷、钛、钒含量。基体锰产生的基体效应可以通过基体匹配的方法消除,基体铁对测定没有影响。方法用于测定锰铁标样,测定值与认定值一致;用于测定锰铁试样,测定结果的相对标准偏差在0.2%~3.6%之间,加标回收率为97%~103%。方法可以用于中、高、低碳锰铁中铜、镍、磷、钛、钒的测定。  相似文献   

14.
基于全自动消解仪优化程序,以混合酸体系(硝酸-氢氟酸-高氯酸)消解样品,通过选择合适的待测同位素以及干扰元素校正方程校正质谱干扰,建立了电热消解-电感耦合等离子质谱法(ICP-MS)测定准东煤中铍、钒、锰、钴、镍、铜、锌、钼、镉、钡、铊、铅、银、铬、锑等15种元素的新方法。确定的最佳实验条件如下:采用标准模式测定铅、镍;采用碰撞模式,以氦气流速为3.0mL/min测定铍、锰、钴、铜、锌、钼、镉、钡、铊、铬、锑,以氦气流速为4.0mL/min测定钒、银;以~(187)Re对~(205)Tl、~(208)Pb进行校正,以~(115)In对~9 Be、~(51)V、~(55)Mn、~(59)Co、~(60)Ni、~(63)Cu、~(66)Zn、~(98)Mo、~(111)Cd、~(138)Ba、~(107)Ag、~(52)Cr、~(121)Sb进行校正可消除基体效应和信号漂移现象的影响。15种元素校准曲线的线性相关系数均大于0.999 9,方法检出限在0.005~0.400μg/g之间。采用实验方法对准东五彩湾煤样中15种元素进行测定,所得结果的相对标准偏差(RSD,n=11)为0.4%~3.3%,加标回收率为94%~115%;除镉、铊、银因含量低超出电感耦合等离子体原子发射光谱法(ICP-AES)的检出限外,其他元素的测得结果均与ICPAES基本一致。  相似文献   

15.
精炼镍是冶炼不锈钢的优质原材料,产品有通用镍、镍豆等,需要检验其中的杂质元素。采用硝酸(1+1)溶解样品,选择Si 251.612nm、Mn 257.610nm、P 178.217nm、Fe259.940nm、Cu 324.754nm、Co 238.892nm、Mg 279.553nm、Al 396.153nm、Zn 206.191nm、Cr 267.716nm为分析线,离峰扣背景校正法消除背景干扰,无镍基体匹配的方法绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定了精炼镍中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬等10种元素。方法中各元素校准曲线的线性相关系数均大于0.999 5;各待测元素的检出限为0.000 12%~0.001 9%。按照实验方法测定精炼镍样品和Nickel200标准样品中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬,样品测定结果的相对标准偏差(RSD,n=11)在1.0%~10%之间,而标样的测定值和认定值相符。对精炼镍试样的加标回收率在90%~105%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号