共查询到17条相似文献,搜索用时 93 毫秒
1.
由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。算法基于一种多流结构的深度神经网络,包括特征提取网络、对象骨架检测子网络、显著性对象检测子网络和跨任务连接部件四个部分。首先,在显著性对象子网络的训练和测试阶段,通过对象骨骼检测子网络学习对象的结构信息,并利用跨任务连接部件使得显著性对象检测子网络能自动编码对象骨骼子网络学习的信息,从而感知对象的整体结构,克服对象区域检测不完整问题;其次,为了进一步提高所提方法的准确率,利用全连接条件随机场对检测结果进行进一步的优化。在三个公共数据集上的实验结果表明,该算法在检测的准确率和运行效率上均优于现有存在的基于深度学习的算法,这也说明了在深度神经网络中考虑对象结构信息的捕获是有意义的,可以有助于提高模型准确率。 相似文献
2.
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 相似文献
4.
《计算机应用与软件》2017,(8)
显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-OMON上进行了实验,从PR曲线、F-Measure方法、MAE绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 相似文献
5.
张巧荣 《中国图象图形学报》2016,21(2):165-173
目的 针对图像的显著区域检测问题,提出一种利用背景先验知识和多尺度分析的显著性检测算法。方法 首先,将原始图像在不同尺度下分解为超像素。然后,在每种尺度下根据各超像素之间的特征差异估计背景,提取背景区域,获取背景先验知识。根据背景先验计算各超像素的显著性,得到显著图。最后,将不同超像素尺度下的显著图进行融合得到最终显著图。结果 在公开的MASR-1000、ECSSD、SED和SOD数据集上进行实验验证,并和目前流行的算法进行实验对比。本文算法的准确率、召回率、F-Measure以及平均绝对误差均在4个数据集上的平均值分别为0.718 9、0.699 9、0.708 6和0.042 3,均优于当前流行的算法。结论 提出了一种新的显著性检测算法,对原始图像进行多尺度分析,利用背景先验计算视觉显著性。实验结果表明,本文算法能够完整、准确地检测显著性区域,适用于自然图像的显著性目标检测或目标分割应用。 相似文献
6.
7.
孟庆春 《计算机应用与软件》2021,38(10):196-200,215
针对目前已有显著性目标检测算法精度不高以及目标边缘模糊等问题,给出一种基于深度网络的显著性目标检测算法.该算法设计一个端到端的多尺度全卷积网络,在原始输入图像中运行一次即可直接得到像素级的显著性图像;通过基于图像四边的边界先验知识改进GMR流形排序算法,根据前景与背景是相对的这一理论提出背景计算;采用基于完全连接的C ... 相似文献
8.
随着深度学习的不断发展,基于深度学习的显著性目标检测已经成为计算机视觉领域的一个研究热点.首先对现有的基于深度学习的显著性目标检测算法分别从边界/语义增强、全局/局部结合和辅助网络三个角度进行了分类介绍并给出了显著性图,同时对三种类型方法进行了定性分析比较;然后简单介绍了基于深度学习的显著性目标检测常用的数据集和评估准... 相似文献
9.
针对目前图像单分类的算法受复杂背景的干扰较大,背景中存在与待分类物体相似的特征,结合当前先进的显著性检测技术与图像单分类算法,提出了基于显著性检测的图像单分类算法.利用现在先进的金字塔特征提取网络,通过注意力机制对图像进行显著性检测,得到显著区域的掩膜图.将掩膜图与原图进行与操作,获得待分类目标.将处理得到的图片送入分... 相似文献
10.
针对传统显著性目标检测方法在检测不同尺度的多个显著性目标方面的不足,提出了一种多尺度特征深度复用的显著性目标检测算法,网络模型由垂直堆叠的双向密集特征聚合模块和水平堆叠的多分辨率语义互补模块组成。首先,双向密集特征聚合模块基于ResNet骨干网络提取不同分辨率语义特征;然后,依次在top-down和bottom-up两条通路上进行自适应融合,以获取不同层次多尺度表征特征;最后,通过多分辨率语义互补模块对两个相邻层次的多尺度特征进行融合,以消除不同层次上特征之间的相互串扰来增强预测结果的一致性。在五个基准数据集上进行的实验结果表明,该方法在Fmax、Sm、MAE最高能达到0.939、0.921、0.028,且检测速率可达74.6 fps,与其他对比算法相比有着更好的检测性能。 相似文献
11.
目的 显著性检测问题是近年来的研究热点之一,针对许多传统方法都存在着特征学习不足和鲁棒检测效果不好等问题,提出一种新的基于深度卷积神经网络的显著性检测模型.方法 首先,利用超像素的方法聚类相似特征的像素点,仿人脑视皮层细胞提取目标边缘,得到区域和边缘特征.然后,通过深度卷积神经网络学习图像的区域与边缘特征,获取相应的目标检测显著度置信图.最后,将深度卷积神经网络输出的置信度融入到条件随机场,求取能量最小化,实现显著性与非显著性判别,完成显著性检测任务.结果 在两个常用的视觉检测数据库上进行实验,本文算法的检测精度与当前最好的方法相比,在MSAR数据库上检测精度相对提升大约1.5%,在Berkeley数据库上提升效果更加明显,达到了5%.此外,无论是自然场景还是人工建筑场景、大目标与小目标,检测的效果都是最好的.结论 本文融合多特征的深度学习方法与单一浅层人工特征的方法相比更有优势,它避免了手工标定特征所带来的不确定性,具有更好的鲁棒性与普适性,从主观视觉愉悦度和客观检测准确度两方面说明了算法的有效性. 相似文献
12.
针对基于图和流形排序(Manifold Ranking)的显著性检测算法(MR算法)过度依赖边界节点的背景特征的问题,提出一种改进的结合前景背景特征的显著性检测算法。首先,对图像进行超像素分割,建立闭环图模型;然后利用流形排序算法根据图像前景特征和背景特征分别得出前景种子和背景种子;再通过亮度和颜色特征对两类种子进行结合,筛选出更为准确的查询节点;最后再利用流形排序算法进行显著值计算,得到最终的显著图。实验表明,改进方法与MR算法相比在精确率、召回率、F值等多个评价指标上均有明显提升,得到的显著图更接近真值。 相似文献
13.
为了准确地进行显著性目标检测,本文提出了一种基于散度-形状引导和优化函数的显著性检测有效框架。首先,通过考虑颜色、空间位置和边缘信息,提出了一种有辨别力的相似性度量。接着,利用散度先验剔除图像边界中的前景噪音获得背景集,并结合相似性度量计算得到基于背景显著图。为了提高检测质量,形状完整性被提出并通过统计在分层空间中区域被激活的次数期望生成相应的形状完整显著图。最后,利用一个优化函数对两个显著图融合后的结果进行优化从而获得最终的结果。在公开数据集 ASD、DUT-OMRON和ECSSD上进行实验验证, 结果证明本文方法能够准确有效地检测出位于图像任意位置的显著性物体。 相似文献
14.
目的 针对现有基于手工特征的显著目标检测算法对于显著性物体尺寸较大、背景杂乱以及多显著目标的复杂图像尚不能有效抑制无关背景区域且完整均匀高亮显著目标的问题,提出了一种利用深度语义信息和多核增强学习的显著目标检测算法。方法 首先对输入图像进行多尺度超像素分割计算,利用基于流形排序的算法构建弱显著性图。其次,利用已训练的经典卷积神经网络对多尺度序列图像提取蕴含语义信息的深度特征,结合弱显著性图从多尺度序列图像内获得可靠的训练样本集合,采用多核增强学习方法得到强显著性检测模型。然后,将该强显著性检测模型应用于多尺度序列图像的所有测试样本中,线性加权融合多尺度的检测结果得到区域级的强显著性图。最后,根据像素间的位置和颜色信息对强显著性图进行像素级的更新,以进一步提高显著图的准确性。结果 在常用的MSRA5K、ECSSD和SOD数据集上与9种主流且相关的算法就准确率、查全率、F-measure值、准确率—召回率(PR)曲线、加权F-measure值和覆盖率(OR)值等指标和直观的视觉检测效果进行了比较。相较于性能第2的非端到端深度神经网络模型,本文算法在3个数据集上的平均F-measure值、加权F-measure值、OR值和平均误差(MAE)值,分别提高了1.6%,22.1%,5.6%和22.9%。结论 相较于基于手工特征的显著性检测算法,本文算法利用图像蕴含的语义信息并结合多个单核支持向量机(SVM)分类器组成强分类器,在复杂图像上取得了较好的检测效果。 相似文献
15.
随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法.但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在... 相似文献
16.
目的 多层特征对于显著性检测具有重要作用,多层特征的提取和融合是显著性检测研究的重要方向之一。针对现有的多层特征提取中忽略了特征融合与传递、对背景干扰信息敏感等问题,本文基于特征金字塔网络和注意力机制提出一种结合空间注意力的多层特征融合显著性检测模型,该模型用简单的网络结构较好地实现了多层特征的融合与传递。方法 为了提高特征融合质量,设计了多层次的特征融合模块,通过不同尺度的池化和卷积优化高层特征和低层特征的融合与传递过程。为了减少低层特征中的背景等噪声干扰,设计了空间注意力模块,利用不同尺度的池化和卷积从高层特征获得空间注意力图,通过注意力图为低层特征补充全局语义信息,突出低层特征的前景并抑制背景干扰。结果 本文在DUTS,DUT-OMRON(Dalian University of Technology and OMRON Corporation),HKU-IS和ECSSD(extended complex scene saliency dataset) 4个公开数据集上对比了9种相关的主流显著性检测方法,在DUTS-test数据集中相对于性能第2的模型,本文方法的最大F值(MaxF)提高了1.04%,平均绝对误差(mean absolute error,MAE)下降了4.35%,准确率—召回率(precision-recall,PR)曲线、结构性度量(S-measure)等评价指标也均优于对比方法,得到的显著图更接近真值图,同时模型也有着不错的速度表现。结论 本文用简单的网络结构较好地实现了多层次特征的融合,特征融合模块提高了特征融合与传递质量,空间注意力模块实现了有效的特征选择,突出了显著区域、减少了背景噪声的干扰。大量的实验表明了模型的综合性能以及各个模块的有效性。 相似文献
17.
目的 显著性检测是图像和视觉领域一个基础问题,传统模型对于显著性物体的边界保留较好,但是对显著性目标的自信度不够高,召回率低,而深度学习模型对于显著性物体的自信度高,但是其结果边界粗糙,准确率较低。针对这两种模型各自的优缺点,提出一种显著性模型以综合利用两种方法的优点并抑制各自的不足。方法 首先改进最新的密集卷积网络,训练了一个基于该网络的全卷积网络(FCN)显著性模型,同时选取一个现有的基于超像素的显著性回归模型,在得到两种模型的显著性结果图后,提出一种融合算法,融合两种方法的结果以得到最终优化结果,该算法通过显著性结果Hadamard积和像素间显著性值的一对一非线性映射,将FCN结果与传统模型的结果相融合。结果 实验在4个数据集上与最新的10种方法进行了比较,在HKU-IS数据集中,相比于性能第2的模型,F值提高了2.6%;在MSRA数据集中,相比于性能第2的模型,F值提高了2.2%,MAE降低了5.6%;在DUT-OMRON数据集中,相比于性能第2的模型,F值提高了5.6%,MAE降低了17.4%。同时也在MSRA数据集中进行了对比实验以验证融合算法的有效性,对比实验结果表明提出的融合算法改善了显著性检测的效果。结论 本文所提出的显著性模型,综合了传统模型和深度学习模型的优点,使显著性检测结果更加准确。 相似文献