首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
在邻苯二甲酸氢钾缓冲溶液中,聚氧乙烯特辛基酚醚(TritonX-100)微乳液存在下,百里香酚蓝与锌(II)形成稳定的橙黄色络合物,据此建立了分光光度法测定锌(II)的方法。实验表明,当络合物最大吸收波长为540nm时,锌(II)质量浓度在0.1~0.7mg/L范围内符合比尔定律,相关系数为0.9980。方法检出限为0.01mg/L,表观摩尔吸光系数为7.4×104 L·moL-1·cm-1。加入柠檬酸钠-酒石酸钾钠混合掩蔽剂掩蔽Fe3+、Al3+,加入铜试剂掩蔽Cu2+、Cd2+、Pb2+。方法用于水中痕量锌(II)的测定,相对标准偏差(RSD,n=6)为1.6%和3.4%,加标回收率为98%和105%,测定值与原子吸收光谱法(AAS)基本一致。  相似文献   

2.
以试剂5-(5-碘-2-吡啶偶氮)-2,4-二氨基甲苯( 5-I-PADAT )做显色剂,建立了双波长叠加分光光度法同时测定钴和钯的新方法。研究发现,在0.6~2.4 mol/L HClO4介质中,钯(Ⅱ)与5-I-PADAT反应形成稳定络合物,而在此高酸度下,钴(Ⅱ)则完全不能显色;在pH 3.6~10的缓冲介质中,钴(Ⅱ)与5-I-PADAT反应形成稳定络合物,钴络合物形成后以强酸酸化,提高酸度至0.6~3.0 mol/L HClO4,可转变为另一种具有较高吸收特性质子化型体。研究还发现,钴(Ⅱ)、钯(Ⅱ)与5-I-PADAT形成的络合物,均呈现两个吸收峰,且吸收峰位置十分接近,强峰分别位于580和583 nm,弱峰分别位于532和543 nm。基于钴(Ⅱ)、钯(Ⅱ)与5-I-PADAT显色酸度的差异以及吸光度的加合性特点,采用双波长叠加,建立了分光光度法同时测定钴和钯的新方法。钴、钯质量浓度分别在0~0.4 μg/mL和0~1.0 μg/mL范围内服从比尔定律,表观摩尔吸光系数分别为2.17×105 L·mol-1·cm-1和1.10×105 L·mol-1·cm-1,灵敏度较单波长分别提高1.75和1.53 倍。方法应用于催化剂和矿样中钴和钯的同时测定,测定值与推荐值相一致,相对标准偏差(RSD,n=6)分别为0.50%~2.3%(钴)和1.0%~1.4%(钯)。  相似文献   

3.
对2-(5-氰基-2-吡啶偶氮)-5-二甲氨基苯胺(5-CN-PADMA)与钴的显色反应进行了探讨,并将其应用于实际样品中钴的测定。实验表明,在pH 4.5的HAc-NaAc缓冲溶液中,钴与5-CN-PADMA形成稳定的络合物,其最大吸收峰位于543nm,经1.2mol/L高氯酸酸化后,该络合物转化成一种较稳定的蓝色络合物,并呈现两个吸收峰,分别位于570nm和609nm。在优化的实验条件下,钴质量浓度在0.04~0.60μg/mL内与其在570mm和609nm处的吸光度加和呈线性关系,线性相关系数为0.9998,表观摩尔吸光系数ε为1.99×105 L· mol-1·cm-1。将该体系应用于镍矿和钯钴炭催化剂中微量钴的测定,结果与火焰原子吸收光谱法一致,相对标准偏差(RSD,n=6)为0.50%~0.60%。  相似文献   

4.
以双环己酮草酰二腙(BCO)光度法快速测定合金中高含量铜,并对最佳显色条件进行了探讨。结果表明:在pH 8.5~10.0的氨水-氯化铵缓冲溶液中,铜与BCO形成蓝色络合物,该络合物的最大吸收波长为600 nm;BCO浓度为0.1 g/L;显色温度为20 ℃;显色时间是10 min;柠檬酸铵用量为1 mL。铜在0.4~4.0 μg/mL范围内符合比尔定律,表观摩尔吸光系数ε=1.6×104 L·mol-1·cm-1。方法应用于高温合金及铜合金标准样品中高含量铜的测定,测定值与认定值相符,相对误差<1.0%,相对标准偏差<6.5%。  相似文献   

5.
采用铬天青S作显色剂,研究了在赤泥-钛白废水综合回收过程中微量钪的分光光度法测定。考察了反应条件、共存离子等因素对检测结果的影响,确定了硫酸浸出液中钪的最佳检测条件为采用伯胺N1923为萃取剂,HCl为反萃剂,相比为1.0,萃取时间为10 min,显色剂铬天青S(CAS)的体积为4.00 mL,显色溶液的pH值为1.0~1.5,显色时间为30 min。加入1.00 mL盐酸羟胺溶液、2.00 mL邻菲罗啉溶液作为掩蔽剂可消除残留于溶液中少量Fe的干扰。试验结果表明,络合物的最大吸收波长为615 nm,表观摩尔吸光系数为2.85×105L·mol-1·cm-1,钪的质量浓度在0 ~ 0.18 mg/L范围内符合比尔定律,校准曲线的相关系数为0.999 1。对钛白废水实际样品进行分析,实验方法与ICP-AES法测钪的相对误差在5%之内,钪测定结果的相对标准偏差(RSD,n>6)为2.4%~4.1%。  相似文献   

6.
铜及其化合物在工业和农业中应用广泛,铜是人体必需的微量元素,但过量的铜对人类和动植物的伤害也不容小觑,因此环境中铜元素的监测非常重要,需要开发便捷快速的铜离子检测方法。在pH=8.0的NH3-NH4Cl缓冲溶液中,席夫碱水杨叉-2-氨基-4-硝基苯酚(SANP) 与铜(Ⅱ)形成1∶1的络合物,其最大吸收波长位于350 nm,加入表面活性剂十二烷基苯磺酸钠(SDBS)后络合物由无色变为黄色,最大吸收波长移至439 nm。研究发现,铜(Ⅱ)质量浓度在0~0.635 mg/L范围与吸光度呈线性关系,线性回归方程为A=0.080 4+0.079 4ρ,线性相关系数r为0.999 83,表观摩尔吸光系数ε为8.74×104 L·mol-1·cm-1,检出限为0.13 mg/L。方法用于工业废水中微量铜(Ⅱ)的测定,结果的相对标准偏差(RSD,n=6)为1.6%~2.1%,加标回收率为99%~102%,测定值与电感耦合等离子体原子发射光谱法(ICP-AES)的测定值基本一致。  相似文献   

7.
孔琼宇  夏畅斌 《冶金分析》2012,32(12):57-59
在KSCN和聚乙二醇2000的存在下,利用Zn与罗丹明B(RhB)的显色反应,对城市污泥中微量锌进行了测定。结果表明,在0.84 mol/L HCl介质中,锌与罗丹明B发生高灵敏的显色反应,生成Zn2+-SCN-RhB缔合物的最大吸收波长在600 nm处,表观摩尔吸光系数为1.6×106 L·mol-1·cm-1;锌含量在0~0.060 mg/L范围内符合比耳定律,方法的检出限为0.04 μg/L。将本文方法应用于城市污泥中痕量锌的测定,结果与双硫腙光度法一致,相对标准偏差(RSD,n=6)为0.3%。  相似文献   

8.
铬在碱性介质中呈黄色,最大吸收波长373 nm处的吸光度与铬的浓度符合比尔定律,据此建立了测定铬的方法。试验了铬的显色条件,确定了显色介质种类、稳定时间。考察了20余种离子的干扰量,表明只有Mn2+和Bi3+对铬的测定有严重干扰,并提出了有效的消除方法,实现了铬的测定。铬的质量浓度在0.14~14 mg/L范围内符合比尔定律,表观摩尔吸光系数为4.77×103 L·mol-1·cm-1。方法已成功地应用于一般矿石样品中0.5%以上铬的测定。  相似文献   

9.
采用氢氟酸-硝酸溶解样品,高氯酸冒烟驱除硅、氟,加入抗坏血酸、显色溶液后直接显色测定,建立了磷钼蓝分光光度法测定工业硅中0.001%~0.27%磷含量的分析方法。结果表明,溶液中磷质量浓度在0.05~1.40 μg/mL范围内符合比尔定律;方法中磷的检出限为0.000 46 μg/mL;表观摩尔吸光系数ε825=2.75×104 L·mol-1·cm-1;样品中其他共存离子不干扰测定。不同实验室应用实验方法测定3个工业硅行业标准样品中磷的结果均与认定值吻合;按照实验方法测定2个工业硅行业标准样品中磷的结果与国标方法GB/T 14819.4-2012和GB/T 14819.5-2012的测定值均基本一致。将实验方法用于工业硅行业标准样品和工业硅实际样品中0.001%~0.27%磷的测定,实验所得结果的相对标准偏差(RSD,n=22)为1.4%~4.5%。
  相似文献   

10.
建立了一种以meso-四(4-羟基-3-甲氧基苯基)卟啉[T(4-H-3-MOP)P]为显色剂测定汞的分光光度法。在Triton X-100存在下,于pH 9.60 Na2B4O7-NaOH缓冲液中,在室温条件下试剂与汞显色反应 5 min,可生成络合比为2∶1的浅棕黄色配合物。配合物的最大吸收峰位于440 nm,表观摩尔吸光系数为1.34×105 L·mol-1·cm-1,汞的质量浓度在0~0.6 μg/mL之间符合比尔定律,方法检出限为9.2×10-3 μg/mL。在显色体系中加入三乙醇胺-酒石酸钾钠-氟化钠混合掩蔽剂后,用方法测定了化工厂和实验室废水中汞,并与冷原子吸收法的结果一致,相对标准偏差不大于2.6%,加标回收率在99%~102%之间。  相似文献   

11.
研究了钌(II)与5-(5-氰基-2-吡啶偶氮)-2,4-二氨基甲苯(5-CN-PADAT)的反应,并将方法应用于钌炭催化、钌分子筛中微量钌的测定。实验表明,盐酸羟胺存在时,在pH 4.0~5.5 HAc-NaAc缓冲溶液中,钌(II)与试剂形成稳定的深红色络合物,最大吸收波长位于520nm处;使用0.3mol/L HCl酸化后,络合物转变为另一种具有较高吸收特性的双质子化型体,并呈现两个吸收峰,分别位于538nm和611nm。在优化的实验条件下,钌(II)质量浓度在0.1~0.9μg/mL范围内与其在538nm和611nm处的吸光度加和呈线性关系,相关系数为0.9997。表观摩尔吸光系数为1.08×105 L·mol-1·cm-1。方法应用于钌炭催化剂、钌分子筛中微量钌的测定,结果与参考值相符,结果的相对标准偏差(RSD,n=6)为1.3%~3.4%,加标回收率为96.5%~101.0%。  相似文献   

12.
在pH 4.0~7.0的HAc-NaAc缓冲介质中,并在50%乙醇存在下,Co(Ⅱ)与新试剂2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-NO3-4-CH3-PADMA)反应形成紫红色配合物;钴配合物形成后,当以强酸酸化,提高酸度至1.8 mol/L H2SO4介质,可转变为另一种具有较高吸收特性的绿蓝色质子化形体,最大吸收波长位于622 nm处,与所用He-Ne激光器的输出激光波长(632.8 nm)能较好匹配,据此建立了激光热透镜光谱法测定痕量钴的新方法。钴质量浓度在3~100 ng/mL范围内与分析信号呈良好的线性关系,检出限为1.0 ng/mL。常见金属离子不干扰钴的测定,特别是与钴伴生的铁、镍和铜等元素有较高的允许量,150倍量的Fe3+和Ni2+、5倍量的Cu2+等不干扰钴的测定。实验方法应用于矿石中痕量钴的测定,结果与推荐值(原子吸收光谱法测定结果)一致,相对标准偏差在0.46%~1.46%之间。  相似文献   

13.
以2-(5-氰基-2-吡啶偶氮)-5-二甲氨基苯胺(5-CN-PADMA)做显色剂,建立了双波长叠加分光光度法测定铜的新方法。研究发现,在pH 4.0~5.0的HAc-NaAc缓冲介质中,于室温下,5-CN-PADMA与铜即可形成稳定的2:1紫红色配合物,其吸收光谱呈现两个吸收峰,分别位于548 nm和583 nm处,且两个吸收峰处的吸光度具有良好的加合性,吸光度之和与铜质量浓度线性相关。铜质量浓度在0~0.8 μg/mL范围内服从比尔定律,双波长测量的表观摩尔吸光系数为1.06×105 L·mol-1·cm-1。应用于铝合金中铜的测定,结果与火焰原子吸收光谱法一致,相对标准偏差(RSD)在0.86%~2.1%之间。  相似文献   

14.
于秀兰  张嘉月 《冶金分析》2013,33(12):67-69
合成了5-(4-安替吡啉偶氮)水杨醛(AASA),探讨了试剂与铌的显色反应条件,建立了测定铌的光度分析新方法。实验表明,在pH 2.0的HCl-KCl缓冲体系中,铌与AASA形成摩尔比为1∶1的浅黄色络合物,最大吸收波长为460 nm。铌 的质量浓度在0~1.6 μg/mL符合比尔定律,其回归方程为A=0.077 79+0.012 91ρNb(μg/25 mL),相关系数r=0.999 6,表观摩尔吸光系数为3.0×104 L·mol-1·cm-1。将AASA分光光度法应用于铁-铌合成溶液中铌的测定,结果与氯磺酚S法一致,相对标准偏差为1.6%~1.7%。  相似文献   

15.
霍燕燕  韩权  杨晓慧  周梅 《冶金分析》2014,34(10):70-72
探讨了以试剂2-(5-溴-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(简称5-Br-4-CH3-PADMA)为显色剂,应用双波长叠加分光光度法测定钯的方法。试验表明,在1.08 ~ 3.06 mol/L H2SO4中,试剂与钯形成稳定的1∶1蓝紫色络合物,该络合物呈现两个强弱不等的吸收峰,分别位于606 nm和564 nm,两个峰的吸光度之和与钯浓度线性相关,钯浓度在0 ~ 1.04 μg/mL范围内符合比尔定律,表观摩尔吸光系数 ε = 1.40 × 105 L·mol-1·cm-1。大量常见金属离子不干扰测定。方法用于含钯分子筛和钯-炭催化剂样品中钯的测定,结果与参考值相符,相对标准偏差(RSD,n=6)为1.8%和2.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号