首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
固载氨基化离子液体的制备及其对CO2的吸附性能   总被引:2,自引:0,他引:2       下载免费PDF全文
杨娜  王睿 《化工学报》2013,64(Z1):128-132
利用浸渍法将[NH3P-mim][BF4]和[MEA]L两种离子液体负载到AC、Al2O3和MCM-41上,考察了对CO2的吸附性能,确定了[NH3P-mim][BF4]/AC对CO2的吸附性能最优。并对[NH3P-mim][BF4]/AC考察了不同负载量、不同温度下对CO2的吸附性能,确定了固载离子液体对CO2的吸附容量随着负载量的增加而增加,且30℃是固载离子液体吸附CO2的最佳温度,吸附容量达到0.063 mmol CO2·(g SILP)-1。对[NH3P-mim][BF4]/AC进行红外和热重两种表征,确定了负载离子液体的结构以及在50℃以下优良的热稳定性。  相似文献   

2.
魏君怡  李勇  薛向欣 《化工学报》2017,68(9):3451-3458
基于离子液体的"可设计性"和"软酸"性质对于其在电镀污泥酸浸液中铬铁萃取分离方面的应用及其机理进行研究。结果表明:咪唑环上烷基链的长度对于铬铁萃取分离效果有较大的影响,阴离子为[BF4]-的离子液体对于铬铁萃取分离能力大于阴离子为[PF6]-的离子液体。在所研究的离子液体中,[Omim] [BF4]对于铬铁具有较好的萃取分离效果,实现了电镀污泥中铬铁分离。结合斜率法、红外光谱分析、Raman光谱分析,[Omim] [BF4]萃取铬符合离子缔合机理,可推测[Omim] [BF4]咪唑阳离子与Cr2O72-阴离子形成离子缔合物而进入有机相,达到萃取分离,从而实现电镀污泥资源化目的,具有一定的应用性。  相似文献   

3.
毛信表  刘莹  陈达  陈赵扬  马淳安 《化工学报》2017,68(5):2027-2034
以2-溴乙胺氢溴酸和N-甲基咪唑盐为原料合成了氨基功能化离子液体1-(2-胺乙基)-3-甲基咪唑溴盐([NH2-emim]Br),用1H NMR和IR对所制备的离子液体进行了表征,测得25℃下[NH2-emim]Br的黏度26.691 Pa·s、电导率0.1130 mS·cm-1,CO2的溶解饱和度82%(摩尔分数),将不同含量的[NH2-emim]Br与[Emim]BF4、[Bmim]BF4、[Bmim]PF6组成二元复合离子液体,并用于CO2电化学还原研究,循环伏安研究表明,CO2在[NH2-emim]Br(0.5%)-[Bmim]BF4复合离子液体中的还原峰电位较[Bmim]BF4正移0.4 V,还原峰电流增大9倍,黏度降低为0.08227 Pa·s,电导率增大至1.317 mS·cm-1,是一种较好的CO2电化学还原离子液体体系。  相似文献   

4.
李骏  何文军  漆志文  宗弘元  杨为民 《化工进展》2016,35(12):4082-4087
针对甲醇-碳酸二甲酯共沸物分离难题,采用萃取精馏技术并以离子液体3-辛基-1-甲基四氟硼酸盐([omim][BF4])为萃取剂进行流程设计和Aspen Plus模拟。根据气液相平衡数据回归了NRTL气液模型的二元交互参数,确保模拟结果准确。通过优化萃取剂用量、最佳回流比、进料位置和闪蒸塔的工艺条件等操作参数,实现了甲醇和碳酸二甲酯有效分离,并使产品质量分数达到99.5%以上。通过与草酸二甲酯作为萃取剂的工艺进行对比,发现[omim][BF4]工艺对分离设备要求更低、萃取剂用量更小,且分离能耗相当。经济分析结果则表明,[omim][BF4]工艺塔费用和填料费用分别为草酸二甲酯工艺的78%和37%,在设备投资上具有一定优势;但工艺能耗费用增加4%,萃取剂费用为草酸二甲酯费用的6.5倍,最终年总花费与草酸二甲酯工艺相当。因此,[omim][BF4]工艺用于甲醇-碳酸二甲酯萃取精馏具有一定的应用前景。  相似文献   

5.
马云倩  王睿 《化工学报》2016,67(Z1):302-306
合成了5种功能化离子液体([CPL][TBAB],[CPL]BF4,[Bmim]HCO3,[Bmim]OAc和[Bmim]Im)以及含有相同阳离子的多酸离子液体[CPL]3PMo12O40和[Bmim]3PMo12O40,构建了以功能化离子液体为溶剂的多酸液相氧化脱硫体系,优选出最佳脱硫剂,并考察了不同吸收温度、气体流量下最优脱硫剂的脱硫性能。结果表明[Bmim]3PMo12O40-[Bmim]HCO3脱硫效率最高,优化的吸收条件为温度高于40℃、气体流量为100 ml·min-1;[Bmim]3PMo12O40-[Bmim]HCO3可以简单地用空气再生。  相似文献   

6.
徐令君  QI Yang  王淑娟 《化工学报》2018,69(12):5112-5119
对液液两相CO2吸收剂1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][BF4])/乙醇胺(MEA)混合水溶液吸收性能进行了实验测定,研究了离子液体[Bmim][BF4]的引入对吸收性能和液液分相的影响,并通过定量碳谱核磁共振法对分相机理和各相中的物质分布进行分析。研究结果表明,一定配比的[Bmim][BF4]/MEA混合水溶液吸收CO2之后会出现互不相溶的液液两相,这种现象伴随着CO2产物的富集;导致液液分相的原因是氨基甲酸盐浓度的增大;随着[Bmim][BF4]质量分数的增大,溶液吸收速率呈现出先增大后减小的趋势;分层后H2O主要分布在富液相,[Bmim][BF4]主要分布在贫液相,H2O的质量分数直接影响分层后富液相的传质性能。  相似文献   

7.
为研究咪唑类离子液体吸收甲苯的性能,考察了甲苯体积分数、吸收温度、N2进气速度和离子液体流量等对吸收甲苯性能的影响,并评价了离子液体的再生性能。结果表明,[Emim][Tf2N]、[Bmim][Tf2N]和[Omim][Tf2N]这3种离子液体对甲苯的吸收率均在90%以上,且阳离子碳链越长,对甲苯的吸收率越高,3种离子液体对甲苯的吸收率大小为:[Omim][Tf2N]>[Bmim][Tf2N]>[Emim][Tf2N]。甲苯体积分数为3 113μL/L、N2进气速度为50 mL/min、离子液体流量为15 mL/min和吸收温度为20℃的条件下,离子液体对甲苯的吸收率最高。离子液体在140℃、5 066 Pa下干燥再生5次后性能基本稳定。  相似文献   

8.
由于离子液体对CO2具有较好的溶解选择性,离子液体支撑液膜分离CO2越来越受到关注。比较了含3种不同阴离子的常规离子液体([bmim][BF4]、[bmim][PF6]、[bmim][Tf2N])作为支撑液膜的液膜相分离CO2/CH4的性能,考察了咪唑环上烷基链长对离子液体支撑液膜性能的影响。考虑向离子液体中引入胺基和羧基等亲CO2基团,制备了1-丁基-3-甲基咪唑丙氨酸离子液体([bmim][β-Ala]),考察了 [bmim][β-Ala]支撑液膜分离CO2/CH4的性能,并对在CO2渗透测试前后的支撑液膜进行了FT-IR分析,发现氨基酸离子液体中的-NH2和CO2的较强作用以及该离子液体的高黏性影响了CO2的透过性,使[Bmim][β-Ala]支撑液膜的CO2透过率低。  相似文献   

9.
以聚乙二醇400(PEG400)为溶剂,氨基酸类离子液体(AAILs)作为化学吸收剂的混合体系具有蒸汽压极低、热稳定性好、黏度和再生能耗低、CO2吸收量和选择性高等优点,适用于燃烧前CO2捕集过程的高温高压吸收条件。本文采用压降法,测定了以四正丁基膦([P4444]+)为阳离子,甘氨酸(Gly)、丙氨酸(Ala)和脯氨酸(Pro)作为阴离子的3种氨基酸类离子液体的混合溶剂体系对CO2的吸收速率,并建立了该无水体系的CO2吸收动力学模型。对于反应速率而言,在333.15K时,[P4444][Gly]-PEG400 > [P4444][Pro]-PEG400 > [P4444][Ala]-PEG400,温度升高至373.15K时,[P4444][Pro]-PEG400 > [P4444][Gly]-PEG400 > [P4444][Ala]-PEG400;根据相关吸收动力学参数,推测出CO2在AAILs-PEG400中的反应均为快反应。通过研究其吸收动力学,获得了关键的吸收动力学数据,为后续的工业开发设计提供基础数据和设计依据。  相似文献   

10.
徐令君  王淑娟 《化工学报》2018,69(9):3879-3886
搭建汽液平衡实验台,对液液分相CO2吸收剂1-丁基-3-甲基咪唑四氟硼酸盐([Bmim][BF4])/乙醇胺(MEA)混合水溶液与CO2的汽液平衡进行了实验测量与分析,并对该吸收剂解吸能耗进行计算。结果表明,随着温度的升高,相同担载量溶液对应的CO2分压升高,[Bmim][BF4]质量分数的改变对汽液平衡的影响不明显。与传统有机胺溶液30%(质量)MEA相比,该吸收剂在能耗方面主要优势在于解吸过程中显热和潜热的减小。其反应热在担载量大于0.45之后明显减小,潜热的减小主要由于解吸塔内H2O气相分压和摩尔分数的减小,当[Bmim][BF4]质量分数大于30%时,显热可以减少30%以上,减少的原因主要为比热容的降低和富液胺浓度的提升。  相似文献   

11.
氨气(NH3)作为一种危害性碱性有毒气体,不仅危害环境,而且会对人体造成不可逆伤害。在电子信息、能源等行业,极微量的NH3即可影响产品品质、降低过程性能。因此,NH3的深度脱除在工业上具有重要的意义。本文综述了近年来NH3深度脱除的工艺现状,分析了NH3脱除材料如离子液体、低共熔溶剂、改性活性炭、分子筛、改性氧化铝、金属盐类、金属有机框架材料、多孔有机聚合物、共价有机骨架材料、氧化石墨烯、普鲁士蓝类似物对NH3的分离性能。总结了深度脱除NH3的工艺特点和脱氨材料的性能,浅析了该领域发展面临的问题,并对未来的发展方向提出了建议。  相似文献   

12.
Naphtha cracker feeds may contain 10-25 wt% aromatic compounds. Removal of these aromatic compounds from the feed to the cracker would offer several advantages: higher capacity, higher thermal efficiency, and less coke formation. In this work, we investigated the separation of toluene from heptane by extraction with ionic liquids.

Several ionic liquids are suitable for extraction of toluene from toluene/heptane mixtures. The selectivities for the aromatic/aliphatic hydrocarbon separation with all ionic liquids tested increase with decreasing aromatic content in the feed. The toluene/heptane selectivities at 10% toluene in the feed at T = 40°C and 75°C with several ionic liquids ([emim]HSO4, [mmim] methylsulfate, [emim] ethylsulfate, [bmim]BF4, [emim] tosylate, [mebupy]BF4, and [mebupy] methylsulfate) are a factor of 1.5-2.5 higher than those obtained with sulfolane, which is a conventional solvent for the extraction of aromatic hydrocarbons from a mixed aromatic/aliphatic hydrocarbon stream. The three most suitable ionic liquids from the ionic liquids tested for the separation of aromatic and aliphatic hydrocarbons are [mebupy]BF4, [mebupy]CH3SO4, and [bmim]BF4 and at 75°C also [emim] tosylate. The ionic liquid [mebupy]BF4 is selected for further testing in our extraction pilot plant.

Because ionic liquids have a negligible vapor pressure, evaporating the extracted hydrocarbons from the ionic liquid phase could achieve the recovery of the ionic liquid. A conceptual process scheme for the extraction has been set up. Preliminary calculations show that both the investment costs and the energy costs will be considerably lower with ionic liquids than with sulfolane as the solvent.  相似文献   

13.
疏水性离子液体萃取氯酚类物质   总被引:1,自引:1,他引:0       下载免费PDF全文
毛世越  刘汉兰 《化工学报》2015,66(Z1):260-264
为了研究离子液体对环境水体中氯酚类物质的萃取性能, 以治理氯酚类污染物。制备了1-辛基-3-甲基咪唑六氟磷酸盐([Omim]PF6) 和1-辛基-3-甲基咪唑氟硼酸盐([Omim]BF4)两种疏水性离子液体。以超声波辅助萃取的方法, 研究了离子液体对2-氯苯酚(2-CP)、4-氯苯酚(4-CP)、2, 4-二氯苯酚(2, 4-DCP)和2, 4, 6-三氯苯酚(2, 4, 6-TCP)等化合物的萃取性能。考察了温度、时间、相比(VIL:VCP)以及溶液 pH 等因素对萃取效果的影响, 并对离子液体的重复使用性能进行了探讨。结果表明, 温度与相比对萃取效果影响显著。两种离子液体对氯酚均显示出良好的萃取性能。在308 K, 当相比(VIL:VCP)为1:3, 溶液pH=3, 萃取10 min的条件下, [Omim]BF4对2-CP、4-CP、2, 4-DCP和2, 4, 6-TCP的萃取率分别为97.60%、95.20%、99.40%和87.20%;而以[Omim]PF6为溶剂, 对氯酚的萃取率依次为95.80%、92.20%、98.20%和85.40%。研究发现, 与磁力搅拌萃取方法不同, 超声波辅助萃取的方法, 随温度升高离子液体对氯酚类物质的萃取率增大。  相似文献   

14.
朱先会  王甫  夏杰成  袁金良 《化工学报》2022,73(10):4324-4334
离子液体(ILs)由于其独特的结构可调性,作为添加剂可有效抑制氨法碳捕集中NH3的逃逸并同时促进CO2的吸收。揭示其吸收NH3和CO2的作用机理对于构建特定的功能型ILs结构具有重要意义。本文采用密度泛函理论(DFT),在B3LYP/6-31'++G(d,p)基组水平下对设计的五种功能型ILs进行了结构优化、频率计算以及原子电荷分析,获得了优化后的结构参数、振动频率以及原子电荷等数据。在此基础上对ILs吸收CO2和NH3进行了相互作用分析。计算结果表明:[HEBim][His]的稳定性最好,经过BSSE校正后的相互作用能为-415.73 kJ·mol-1。通过静电势和电荷分析找到了设计的ILs与气体作用的最佳位点:NH3主要与ILs阳离子的羟基形成 O—H…N型氢键,其中,[HEBim][His]吸收NH3的能力最强,形成的氢键结合能为38.52 kJ·mol-1,具有较强的氢键作用;CO2主要与阴离子中的氨基形成C—N…C型氢键,[HEBim][Ala]吸收CO2的能力最强,形成的氢键结合能为10.15 kJ·mol-1,具有较弱的氢键作用。当ILs同时与NH3和CO2相互作用时,其吸收能力均有不同程度的下降,[HEBim][His]与[HEBim][Ala]的综合吸收效果最佳。  相似文献   

15.
朱先会  王甫  夏杰成  袁金良 《化工学报》1951,73(10):4324-4334
离子液体(ILs)由于其独特的结构可调性,作为添加剂可有效抑制氨法碳捕集中NH3的逃逸并同时促进CO2的吸收。揭示其吸收NH3和CO2的作用机理对于构建特定的功能型ILs结构具有重要意义。本文采用密度泛函理论(DFT),在B3LYP/6-31'++G(d,p)基组水平下对设计的五种功能型ILs进行了结构优化、频率计算以及原子电荷分析,获得了优化后的结构参数、振动频率以及原子电荷等数据。在此基础上对ILs吸收CO2和NH3进行了相互作用分析。计算结果表明:[HEBim][His]的稳定性最好,经过BSSE校正后的相互作用能为-415.73 kJ·mol-1。通过静电势和电荷分析找到了设计的ILs与气体作用的最佳位点:NH3主要与ILs阳离子的羟基形成 O—H…N型氢键,其中,[HEBim][His]吸收NH3的能力最强,形成的氢键结合能为38.52 kJ·mol-1,具有较强的氢键作用;CO2主要与阴离子中的氨基形成C—N…C型氢键,[HEBim][Ala]吸收CO2的能力最强,形成的氢键结合能为10.15 kJ·mol-1,具有较弱的氢键作用。当ILs同时与NH3和CO2相互作用时,其吸收能力均有不同程度的下降,[HEBim][His]与[HEBim][Ala]的综合吸收效果最佳。  相似文献   

16.
咪唑型离子液体热物理性质测量   总被引:2,自引:1,他引:1       下载免费PDF全文
利用自行搭建的热线法液体热导率和热扩散系数装置测试了两种咪唑型离子液体([C6mIm][BF4]和[C4mIm][BF4])在不同温度下的热导率和热扩散系数。根据文献报道的密度数据获得了样品的比热容。结果表明:两种离子液体的热导率与温度的相关性不大;两种阳离子结构相似的离子液体热扩散率相近, 热扩散率随温度的升高有明显的变化, 本文认为离子液体内部的离子动量分布与温度紧密相关, 离子间的动量交换随温度的升高而增加, 离子动量分布随温度升高逐渐趋于一致, 离子间碰撞产生的动量交换不再明显改变离子的动量, 导致热扩散率的变化随温度升高而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号