共查询到17条相似文献,搜索用时 78 毫秒
1.
目的 目标跟踪是计算机视觉领域的重要组成部分。近年来,基于相关滤波和深度学习的目标跟踪算法层出不穷,本文拟对经典的若干目标跟踪算法进行阐述与分析。方法 首先,对基于相关滤波跟踪算法的基础理论进行介绍,针对相关滤波算法在特征改进类、尺度改进类、消除边界效应类、图像分块类与目标响应自适应类方面进行总结;接下来,从3个方面对基于深度学习的目标跟踪算法进行阐述与分析:目标分类、结构化回归、孪生网络,并对有代表性的跟踪算法的优势与缺陷进行较深层次的解读。结果 通过列举跟踪算法在相关滤波阶段、深度学习阶段针对不同的改进机制的改进算法,总结各阶段算法的优缺点。对目标跟踪算法的最新进展进行阐述,最终对目标跟踪算法的未来发展方向进行总结。结论 基于相关滤波的目标算法在实时性方面表现优秀,但对于复杂背景干扰、相似物遮挡等情况仍然需要优化。深层的卷积特征对于目标有强大的表示力,通过使相关滤波算法与深度学习结合,大幅度提升了算法表现力。基于深度学习的跟踪算法则更侧重于跟踪的性能,大多无法满足实时性。孪生神经网络的使用对于基于深度学习类目标跟踪算法产生了很大的推动,兼顾了算法的性能和实时性。 相似文献
2.
近年来,无人机因其小巧灵活、智能自主等特点被广泛应用于民用和军事等领域中,特别是搜索侦察过程中首要的目标跟踪任务。无人机视觉目标跟踪场景的复杂性和运动目标的多变性,使得目标特征提取及模型建立困难,对目标跟踪性能带来巨大的挑战。本文首先介绍了无人机视觉目标跟踪的研究现状,梳理了经典和最新的目标跟踪算法,特别是基于相关滤波的跟踪算法和基于深度学习的跟踪算法,并对比了不同算法的优缺点。其次,归纳了常用的目标跟踪数据集和性能评价指标。最后,展望了无人机视觉目标跟踪算法的未来发展趋势。 相似文献
3.
4.
5.
目前的雷达目标跟踪检测系统跟踪路线与实际路线相差较大,泛化误差率高。基于并行Boosting算法设计了一种新的雷达目标跟踪检测系统,硬件内部引入数据多处理器,对收集的雷达位置数据集中处理,连接I/O接口,配置数据过滤器,将雷达位置信息数据的状态参数录入过滤器元件中。在软件部分,利用并行Boosting算法的内部学习融合方式调节不同的雷达目标追踪系统状态,通过信息处理、航迹分析、落脚点判断来整合相应的跟踪检测信息,构建检验方程式防止外来无关数据的侵扰,最终得到雷达目标跟踪数据操作状态,完成目标跟踪检测。实验结果表明,基于并行Boosting算法的雷达目标跟踪检测系统设定的检测路线与实际路线吻合度高达99.21%,泛化误差远远低于传统目标跟踪检测系统,实用性更强。 相似文献
6.
无人机多目标检测技术广泛应用于交通、航空等重要领域,发展前景广阔,市场需求空间巨大。传统的目标检测算法已无法满足无人机进行多目标检测过程中可能遇到的目标数量多、目标种类多、拍摄目标小等需求,因此提升无人机多目标检测能力成为了急需解决的难题,也是重要的研究方向。针对无人机对目标检测实时性要求较高,同时考虑到提高多目标和小目标的检测精度以及推理速度,选用YOLO目标检测算法为模型,分析YOLO系列算法的优缺点,并对各算法进行总结归纳。 相似文献
7.
针对海上复杂环境下深度学习方法跟踪速度慢和尺度变化问题,以及现有跟踪算法仅使用单层深度特征或手动融合多层特征的问题,提出一种基于卷积神经网络特征深度融合的多尺度相关滤波海上目标跟踪算法。以VGG-NET-16深度模型为基础,加入多层特征融合结构,实现深度卷积融合网络,用于特征提取,通过相关滤波算法构建定位滤波器,确定目标的中心位置,通过多尺度采样构建尺度滤波器,实现对目标的判断。实验结果表明,该算法可对海上移动目标实现多尺度的有效跟踪。 相似文献
8.
单目标跟踪是一种在视频中利用目标外观和上下文信息对单个目标分析运动状态、提供定位的技术,在智能监控、智能交互、导航制导等方面具有应用前景,但遮挡、背景干扰、目标变化等问题导致实际应用的进展缓慢.随着近年来深度学习的快速发展,研究使用深度学习技术优化单目标跟踪算法已成为计算机视觉领域的热点之一.围绕基于深度学习的单目标跟踪算法,在分析了单目标跟踪的基本原理基础上,从相关滤波、孪生网络、元学习、注意力、循环神经网络和生成对抗网络六个方面,根据核心算法的不同分别进行了概述和分析;此外,对研究现状进行了总结,提出了算法的发展趋势和优化思路. 相似文献
9.
10.
目标跟踪是利用一个视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标位置的一种技术,是计算机视觉的一个重要基础问题,具有重要的理论研究意义和应用价值,在智能视频监控系统、智能人机交互、智能交通和视觉导航系统等方面具有广泛应用。大数据时代的到来及深度学习方法的出现,为目标跟踪的研究提供了新的契机。本文首先阐述了目标跟踪的基本研究框架,从观测模型的角度对现有目标跟踪的历史进行回顾,指出深度学习为获得更为鲁棒的观测模型提供了可能;进而从深度判别模型、深度生成式模型等方面介绍了适用于目标跟踪的深度学习方法;从网络结构、功能划分和网络训练等几个角度对目前的深度目标跟踪方法进行分类并深入地阐述和分析了当前的深度目标跟踪方法;然后,补充介绍了其他一些深度目标跟踪方法,包括基于分类与回归融合的深度目标跟踪方法、基于强化学习的深度目标跟踪方法、基于集成学习的深度目标跟踪方法和基于元学习的深度目标跟踪方法等;之后,介绍了目前主要的适用于深度目标跟踪的数据库及其评测方法;接下来从移动端跟踪系统,基于检测与跟踪的系统等方面深入分析与总结了目标跟踪中的最新具体应用情况,最后对深度学习方法在目标跟踪中存在的训练数据不足、实时跟踪和长程跟踪等问题进行分析,并对未来的发展方向进行了展望。 相似文献
11.
针对运动目标鲁棒跟踪问题,提出一种基于离线字典学习的视频目标跟踪鲁棒算法。采用字典编码方式提取目标的局部区域描述符,随后通过训练分类器将跟踪问题转化为背景和前景分类问题,最终通过粒子滤波对物体位置进行估计实现跟踪。该算法能够有效解决由于光照变化、背景复杂、快速运动、遮挡产生的跟踪困难。经过不同图像序列的实验对比表明,与现有方法相比,本文算法的鲁棒性较高。 相似文献
12.
遥感图像分析在国土资源管理、海洋监测等领域有着极为广阔的应用前景。深度学习技术已在图像处理领域取得突破性进展,然而,遥感图像固有的尺寸大、目标小而密集等特点,使得将面向普通图像的深度学习方法用于遥感目标检测普遍存在定位不准确、小目标检测难、大图检测精度差等问题。针对上述难题,
提出了一种新型遥感图像目标检测算法DFS。与传统机器学习方法相比,DFS
设计了新的维度聚类模块、定制损失函数和滑动窗口分割检测机制。其中,维度聚类模块通过设计聚类机制优化定制先验框,提高定位精度;定制损失函数提高对船只等小目标的检测精度;滑动窗口分割检测解决大图检测精度低的问题。在经典遥感数据集上开展的实验对比表明,与YOLOv2相比,DFS算法的mAP提高了256%,小目标检测效率及大图检测效能大幅提高。 相似文献
13.
目标检测是计算机视觉研究领域的核心问题和最具挑战性的问题之一,随着深度学习技术的广泛应用,目标检测的效率和精度逐渐提升,在某些方面已达到甚至超过人眼的分辨水平.但是,由于小目标在图像中覆盖面积小、分辨率低和特征不明显等原因,现有的目标检测方法对小目标的检测效果都不理想,因此也诞生了很多专门针对提升小目标检测效果的方法.... 相似文献
14.
15.
针对长时目标跟踪所面临的目标被遮挡、出视野等常常会导致跟踪漂移或丢失的问题,基于MDNet提出一种深度长时目标跟踪算法(long-term object tracking based on MDNet, LT-MDNet)。首先,引入了一种改进的收缩损失函数,以解决模型训练时正负样本不均衡的问题;其次,设计了一种高置信度保留样本池,对在线跟踪时的每一帧的有效并且置信度最高结果进行保留,并在池满时替换最低置信度的保留样本;最后,在模型检测到跟踪失败或连续跟踪帧数达到特定阈值时,利用保留样本池进行在线训练更新模型,从而使模型在应对长时跟踪时保持鲁棒和高效。实验结果表明,LT-MDNet在跟踪精度和成功率上都展现了极强的竞争力,并且在目标被遮挡、出视野等情况下保持了优越的跟踪性能和可靠性。 相似文献
16.
充分利用视频中的时空上下文信息能明显提高目标跟踪性能,但目前大多数基于深度学习的目标跟踪算法仅利用当前帧的特征信息来定位目标,没有利用同一目标在视频前后帧的时空上下文特征信息,导致跟踪目标易受到邻近相似目标的干扰,从而在跟踪定位时会引入一个潜在的累计误差。为了保留时空上下文信息,在SiamMask算法的基础上引入一个短期记忆存储池来存储历史帧特征;同时,提出了外观显著性增强模块(ASBM),一方面增强跟踪目标的显著性特征,另一方面抑制周围相似目标对目标的干扰。基于此,提出一种基于时空上下文信息增强的目标跟踪算法。在VOT2016、VOT2018、DAVIS-2016和DAVIS-2017等四个数据集上进行实验与分析,结果表明所提出的算法相较于SiamMask算法在VOT2016上的准确率和平均重叠率(EAO)分别提升了4个百分点和2个百分点;在VOT2018上的准确率、鲁棒性和EAO分别提升了3.7个百分点、2.8个百分点和1个百分点;在DAVIS-2016上的区域相似度、轮廓精度指标中的下降率均分别降低了0.2个百分点;在DAVIS-2017上的区域相似度、轮廓精度指标中的下降率分别降低了1.3和0.9个百分点。 相似文献
17.
为解决在典型相关滤波框架模型中样本信息判别性低引起的跟踪漂移问题,提出一种利用空间结构信息的相关滤波目标跟踪算法。首先,引入空间上下文结构约束进行模型构建的优化,同时利用正则化最小二乘与矩阵分解思想实现闭式求解;然后,采用互补特征用于目标表观描述,并利用尺度因子池处理目标尺度变化情况;最后,借助目标运动连续性进行目标受遮挡影响情况的判定,设计相应的模型更新策略。实验结果表明,在多种典型测试场景中所提算法的准确率较传统算法提高了17.63%,成功率提高了24.93%,可以取得较为鲁棒的跟踪效果。 相似文献