首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.  相似文献   

2.
《中国测试》2017,(11):51-58
量子点是一种新型荧光纳米材料,具有独特而优良的荧光性质,近年来受到研究者的广泛关注。文章综述蛋白质、抗体、肽类以及DNA等对CdSe量子点(CdSe QDs)的表面功能化作用,以及CdSe QDs在生物传感分析中的重要研究进展。具体介绍CdSe量子点的多种合成方法(包括有机相合成、水相合成等),蛋白质、抗体、肽类、DNA利用共价键或静电作用对CdSe量子点修饰方法,以及其在生物医学标记与成像、生物传感、药物载送以及癌症治疗等领域的相关应用,最后针对现有研究的不足进行展望。希望通过对CdSe量子点全方位总结与概述,在一定程度上帮助科研工作者快速、准确了解其相关性质与研究进展。  相似文献   

3.
CdSe quantum dots prepared by micro emulsion technique shows quantum confinement effect and broad emission at 532 nm. These quantum dots have about 4.35 nm size, and they exhibit good nonlinear effects which are measured using z-scan technique. The samples have a reverse saturation in the nonlinear absorption as nonlinear optical absorption coefficient β is 2.545 × 10−10 W m−1 and nonlinear optical refraction coefficient n 2 is −1.77 × 10−10 esu. The third-order nonlinear optical susceptibility is found to be 4.646 × 10−11 esu and also the figure of merit is 2.01 × 10−12 esu m. The optical limiting threshold which is found to be 0.346 GW/cm2 makes it a good candidate for device fabrication.  相似文献   

4.
This letter demonstrates the use of one of the nucleobases, ‘cytosine’ as a new capping agent in controlling the size of the nanoparticles. A size dependent blue shift in optical absorption with enhanced luminescence is observed. Since the calculated density of states do not show any change in the band gap of as-prepared quantum dots after capping, the observed blue shift of the absorption peak can solely be attributed to the so-called size-effect whereas the enhancement in luminescence to surfactant mediated defect passivation. It is expected that the observed properties of the cytosine capped CdSe quantum dots would facilitate a better bio-compatibility of tailor-made nanoparticles for bio-imaging applications.  相似文献   

5.
CdS量子点的制备和光学性质   总被引:3,自引:0,他引:3  
以醋酸镉、硫粉为原料制备CdS量子点,研究了硫的加入量对其光学性质的影响,结果表明:合成的CdS量子点粒径均匀,分散性较好,随着硫加入量的增加CdS量子点的粒径增大;反应中过量的硫能有效地填补硫空位,从而抑制表面态发光,同时,ODA的修饰也能有效地钝化表面态,减小表面态的发光强度.  相似文献   

6.
ZnSe QDs have been synthesized by wet chemical, template free process by zinc acetate and elemental selenium powder in presence of ethylene glycol, hydrazine hydrate and a defined amount of water at 90 °C. The product was in strong quantum confinement regime, having yield as high as 50 %. The transmission electron microscopy image indicated that the particles were well dispersed and spherical in shape. The X-ray diffraction analysis showed that the ZnSe nanoparticles were of the Cubic structure, with average particle diameter of about 3.50 nm. The FTIR characteristic indicates that the N2H4 molecule has intercalated into the complex and formed a molecular precursor.  相似文献   

7.
采用前驱体分解法制备了Cu-In-S量子点,研究了制备工艺对Cu-In-S量子点的形貌以及光学性能的影响。实验结果表明,反应时间和反应温度可影响Cu-In-S纳米颗粒的尺寸和光学性能。随时间增加,Cu-In-S粒径变大,同时会伴随着棒状晶体的出现,荧光发射谱的峰位发生红移。随反应温度升高,纳米晶的形核速率和长大速率增加,并且粒径也有增大,纳米晶的形状可以由单一的球形变为球形与棒状的混合,荧光谱峰位亦会发生红移。X射线光电子能谱分析表明,所制备颗粒为CuInS2纳米晶。为进一步制备无毒量子点发光器件(QLEDs)奠定了基础。  相似文献   

8.
Ab initio computational studies were performed for CdSe nanocrystals (NCs) over a wide variety of sizes ranging from 8 to 150 atoms in conjunction with recent experimental work. The density functional based calculations indicate substantial relaxations. Changes in coordination of surface atoms were found to play a crucial role in determining the NC stability and optical properties. While optimally (threefold) coordinated surface atoms resulted in stable closed-shell structures with large optical gaps, sub-optimal coordination gave rise to lower stability and negligible optical gaps. These computations are in qualitative agreement with recent chemical etching experiments suggesting that closed shell NCs contribute strongly to photoluminescence quantum yield while clusters with nonoptimal surface coordination do not.  相似文献   

9.
The photovoltaic characterization of CdSe quantum dots sensitized solar cells (QDSSCs) by tuning band gap of CdSe quantum dots (QDs) through size control has been investigated. Fluorine doped tin oxide (FTO) substrates were coated with 20 nm in diameter TiO2 nanoparticles (NPs). Pre-synthesized colloidal CdSe quantum dots of different sizes (from 4.0 to 5.4 nm) were deposited on the TiO2-coated substrates using direct adsorption (DA) method. The FTO counter electrodes were coated with platinum, while the electrolyte containing I?/I 3 ? redox species was sandwiched between the two electrodes. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs were measured for different dipping times, and AM 1.5 simulated sunlight. The maximum values of short circuit current density (Jsc) and conversion efficiency (η) are 1.62 mA/cm2 and 0.29 % respectively, corresponding to CdSe QDs of size 4.52 nm (542 nm absorption edge) and of 6 h dipping time. The variation of the CdSe QDs size mainly tunes the alignment of the conduction band minimum of CdSe with respect to that of TiO2 surface. Furthermore, the Jsc increases linearly with increasing intensity of the sun light, which indicates the sensitivity of the assembled cells.  相似文献   

10.
研究了不同壳层厚度(0~5.5ML)的CdSe/CdS核壳量子点的一次和高次拉曼散射,具体分析了CdSe和CdS的表面模随着壳层厚度的变化情况.结果表明,随着壳层厚度的增加,CdSe表面模(SO1)从198cm-1频移到185cm-1,CdS的表面模(SO2)从275cm-1频移到267cm-1,并且SO1和SO2试验结果与由介电连续模型得到的理论值很接近.此外,根据CdSe表面模的频移,对随着CdS壳层厚度的增加而引起的核层(CdSe)的介电常数随环境的变化做出了修正.  相似文献   

11.
The tuning of CdSe quantum dot (QDs) sizes, and consequently their corresponding two-photon absorption (TPA) cross section, has been systematically investigated. As the size (diameter) of the quantum dots increases, the TPA cross section is found to be empirically related via a power-law proportionality of 3.5+/-0.5 and 5.6+/-0.7 to the diameters of CdSe and CdTe QDs, respectively. The results are tentatively rationalized via a theoretical model of two-photon excitation properties in a system incorporating excitons and defects.  相似文献   

12.
Wang CH  Chen TT  Chen YF  Ho ML  Lai CW  Chou PT 《Nanotechnology》2008,19(11):115702
Recombination dynamics in CdTe/CdSe core-shell type-II quantum dots (QDs) has been investigated by time-resolved photoluminescence (PL) spectroscopy. A very long PL decay time of several hundred nanoseconds has been found at low temperature, which can be rationalized by the spatially separated electrons and holes occurring in a type-II heterostructure. For the temperature dependence of the radiative lifetime, the linewidth and the peak energy of PL spectra show that the recombination of carriers is dominated by delocalized excitons at temperatures below 150?K, while the mixture of delocalized excitons, electrons and holes overwhelms the process at higher temperature. The binding energy of delocalized excitons obtained from the temperature dependence of the non-radiative lifetime is consistent with the theoretical value. The energy dependence of lifetime measurements reveals a third power relationship between the radiative lifetime and the radius of QDs, the light of which can be shed by the quantum confinement effect. In addition, the radiative decay rate is found to be proportional to the square root of excitation power, arising from the change of wavefunction overlap of electrons and holes due to the band bending effect, which is an inherent character of a type-II band alignment.  相似文献   

13.
In this study, a method for the detection of C-reactive protein (CRP) using CdSe and CdSe/ZnS quantum dots (QDs) is proposed. CdSe and CdSe/ZnS core-shell QDs are synthesised by using 2-mercaptosuccinic acid (MSA) as a capping agent. These QDs were then subjected to various characterisation studies, namely X-ray diffraction and transmission electron microscope for size and structure, Fourier transform infrared spectroscopy for the confirmation of functional groups, ultraviolet–visible absorption and fluorescence spectroscopy for optical characteristics and dynamic light scattering for hydrodynamic changes of QDs. Two biochemical mixtures were developed: one by mixing blood serum containing CRP and CdSe-phosphorylethanolamine (PEA) and the other by mixing blood serum with CdSe/ZnS-PEA. When these mixtures are observed for fluorescence due to interaction of QDs with CRP, a correlation between changes in fluorescence for different concentrations of CRP is noted. The result demonstrates that CRP can be detected with the help of QDs without using any antibodies.  相似文献   

14.
Zn1−xCdxS (x = 0.1, 0.2, 0.3, 0.4, 0.5 … 0.9) quantum dots were synthesized successfully using novel in situ technique in polyvinyl alcohol (PVA) matrix. The PVA acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by X-ray diffraction (XRD), TEM analysis, UV–Visible absorption and photoluminescence spectroscopy (PL). X-ray diffraction patterns revealed cubic zinc blende phase of the samples with lattice parameter in the range 5.47–5.75 Å. Optical band gap values were calculated from the absorption spectra and observed a decreasing band gap with increasing Cd:Zn ratio. The Raman spectra were recorded using conventional Micro Raman technique. Photoluminescence spectra showed asymmetric broad emission with multiple maxima. The concentration dependent quenching of PL intensity with increasing Cd:Zn ratio was observed along with a red shift. The nonlinear optical (NLO) and limiting properties were studied using Z-scan technique.  相似文献   

15.
We show by cryogenic transmission electron microscopy that PbSe and CdSe nanocrystals of various shapes in a liquid colloidal dispersion self-assemble into equilibrium structures that have a pronounced dipolar character, to an extent that depends on particle concentration and size. Analyzing the cluster-size distributions with a one-dimensional (1D) aggregation model yields a dipolar pair attraction of 8-10 kBT at room temperature. This accounts for the long-range alignment of the crystal planes of individual nanocrystals in self-assembled superstructures and for anisotropic nanostructures grown via oriented attachment.  相似文献   

16.
A novel approach has been developed to synthesize cysteamine (CA)-CdTe quantum dots (QDs) in an aqueous medium. Compared with previous reports, the proposed method involves a one-step synthesis using TeO2 to replace Te or Al2Te3 as tellurium source. The influences of the precursor Cd/Te molar ratios and the pH of the original solution on the quantum yield (QY) of the obtained CdTe QDs were investigated systematically. Green- to orange-emitting CdTe QDs, with a maximum photoluminescence QY of 10.73%, were obtained. X-ray powder diffraction and transmission electron microscopy were used to characterize the crystalline structure and shape of the materials. CdTe QDs with CA modification exhibit a zinc-blended crystal structure in a sphere-like shape.  相似文献   

17.
CdSe量子点的制备及荧光性能改善   总被引:3,自引:0,他引:3  
宁佳  王德平  黄文旵  姚爱华  郁美娟 《功能材料》2007,38(9):1531-1532,1536
主要讨论了CdSe量子点的制备及荧光性能的改善.采用水相合成方法制备了CdSe量子点,并用X射线粉末衍射仪对所合成的量子点进行表征,用荧光分光光度计研究了量子点的荧光性质.结果表明,采用样品处理温度的调节和ZnS壳层的包覆能在一定程度上改善CdSe量子点的荧光性能.  相似文献   

18.
Photoluminescence properties from water soluble CdSe/ZnS QDs encapsulated with hybrid trioctylphosphine-poly(acrylamide-co-acrylic acid)-ethanolamine (TOPO-PSMA-EA) shell have been investigated. It was found that PL efficiency of CdSe/ZnS QDs in water was increased 5–30% after introducing PSMA-EA polymers to encapsulate CdSe/ZnS-TOPO QDs. Higher PSMA concentrations were found to enhance the PL efficiency of QDs up to 1.8 folds, which is ascribed to a better packing and passivation of the TOPO-PSMA-EA shell over the QDs. Time-resolved photoluminescence suggested that the mean lifetime of photoexcited carriers in the water-soluble CdSe/ZnS-TOPO-PSMA-EA QDs elongated 2–17 ns compared with that of uncoated samples, indicating that PL quenching defects were effectively removed for CdSe/ZnS QDs with hybrid TOPO-PSMA-EA shell.  相似文献   

19.
Compared with the most studied green-red emitting (530–650 nm) quantum dots (QDs), the preparation of short-wavelength-emitting QDs remains difficult. Besides, one of the representative short-wavelength QDs materials, ZnCdSe, has a shortcoming of high content of toxic cadmium metal. In this paper, we report the synthesis of high-quality water-soluble ZnCdSe QDs via optimized one-step hydrothermal method with a new thiol as ligand, within a short time of 65 min. The emission wavelength of prepared QDs is tunable in the range of 425–540 nm by merely controlling the molar ratio of Cd:Zn or Se:Zn, and the quantum yield reaches 35%. More importantly, the maximum Cd:Zn molar ratio has been reduced to 0.04:1.0, much lower than that reported in the literature (0.5:1.0), resulting in excellent biological compatibility of prepared QDs and thus their promising applications in biological fields. Moreover, the transmission electron microscopy was employed to examine the effect of Cd:Zn ratio on the size of prepared ZnCdSe QDs, which were also characterized by x-ray photoelectron spectroscopy and electron diffraction spectroscopy.  相似文献   

20.
A study of the influence of the local environment on the light-induced luminescence enhancement of CdSe/ZnS quantum dots (QD) embedded in silica colloids that are dispersed in various solvents is presented. The photoluminescence of the embedded QD is enhanced up to a factor of ten upon photoactivation by ultraviolet or visible light. This enhancement is strongly dependent on the local environment. The thickness-dependent permeability of the silica shell covering the QD controls the influence of the solvent on the QD. If foreign ions are present the activation state is stabilized after termination of the activation, whereas in their absence the process is partially reversible. A new qualitative model for the photoactivation of QD in various environments is developed. It comprises light-induced passivation and subsequent oxidation processes. The embedded QD also retain their fluorescence quantum yield inside living cells. Moreover, they can be activated for many hours in living cells by laser radiation in the visible regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号