首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium phthalocyanine–CdSe/ZnS quantum dots (QDs) nanocomposites (InPc–CdSe/ZnS) of three sizes (5.57, 8.12 and 8.75 nm) were synthesized according to known procedures. The particle size of the CdSe/ZnS QDs alone are 3.95, 6.02, and 6.66 nm, and are denoted as QD1, QD2 and QD3 respectively. The nonlinear absorption (NLA) properties of the nanoconjugates (InPc–CdSe/ZnS) were investigated with nanosecond laser radiation at 532 nm wavelength. Enhanced NLA properties compared to the InPc alone were observed in the conjugates. The NLA was found to increase with the size of the CdSe/ZnS particles attached to the phthalocyanine. The observed increase was due to the availability of more free-carrier ions in the larger QDs, thus giving rise to the enhanced free-carrier absorption. The measured free-carrier absorption cross-sections (σFCA) are 1.10, 1.65 and 1.95 (×10−19 cm2) for InPc-QD1, InPc-QD2 and InPc-QD3 respectively. The nanoconjugates (InPc–CdSe/ZnS) showed a much lower threshold for optical limiting together with a much lower transmission at high fluences, than the previously reported nanocomposite limiters.  相似文献   

2.
Cadmium selenide quantum dots (CdSe QDs) were synthesized in aqueous phase by the freezing temperature injection technique using different capping agents (viz. thioglycolic acid, 1-thioglycerol, L-cysteine). Absorption spectra of CdSe QDs exhibited a blue shift as compared to its bulk counterpart, which is an indication of quantum confinement effect. The photoluminescence spectra of CdSe QDs confirmed that the particles are poly-dispersed and possess enhanced luminescent property, depending upon the chemical nature of capping agents. The QDs have been characterized by Fourier-transform infrared spectroscopy, atomic absorption spectroscopy and transmission electron microscopy. Further, antimicrobial activity of as-prepared QDs has also been investigated using the disk diffusion method.  相似文献   

3.
Enhanced nonlinear optical properties (in dimethyl sulphoxide) is observed for 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophenoxy)phthalocyaninato indium(III) chloride (InPc) when covalently linked to CdSe/ZnS or CdSe quantum dots (QDs). The experimental nonlinear optical parameters were obtained from Z-Scan measurements. Contributions from two-photon absorption (2PA) due to the InPc, and free-carrier absorption (FCA) by QDS have been identified as the main factors responsible for the enhanced optical limiting. The effective nonlinear absorption coefficient for InPc-CdSe/ZnS was found to be 700.0 cm/GW. The FCA cross-sections for InPc-CdSe/ZnS and InPc-CdSe composites were found to be 1.52 × 10−19 and 6.00 × 10−20 cm2 respectively. A much lower limiting threshold of 92 mJ cm−2 was observed for InPc-CdSe/ZnS nanocomposite, hence, making it suitable for use as optical limiting material. Density Functional Theory (DFT) calculations on similar phthalocyanine-quantum dots system was modeled in order to explain the enhancement in the observed nonlinear optical properties of the Pc in the presence of the QDs. The experimentally determined nonlinear optical properties are well within the range of the DFT calculated properties.  相似文献   

4.
In order to understand the effect of capping ligand on optical and electrical properties of semiconductor quantum dots (QDs), we have added liquid crystal (8CB) to the CdSe/CdS/ZnS QDs monolayer formed via the Langmuir Blodgett technique And studied emission spectra and conducting properties of resulting QDs. The assembly of QDs monolayer modified by liquid crystal (8CB) can be tuned by varying the temperature. The mechanism of the influence of capping ligands on the gap energy, dipole moment and charge distribution within (CdSe)13 cluster was studied via quantum chemical calculations, i.e. we have used density functional theory to systematically investigate the equilibrium configuration of QDs passivated by oleic acid and liquid crystal ligands.  相似文献   

5.
A transparent poly (vinyl alcohol) (PVA) nanocomposite thin film (30–50 nm) reinforced with core/shell cadmium selenide (CdSe)/zinc sulfide (ZnS) quantum dots (QDs) was fabricated by a drop-casting method. A narrow peak at ~556 nm observed in the UV–vis spectrum indicates the uniformly dispersed QDs in the PVA matrix. FT-IR analysis indicates the interaction between the QDs and the polymer matrix. Both PVA and PVA-QDs nanocomposite thin films show polarized light dependent absorption properties with several different absorption peaks. As compared to the only fluorescent emission peak at 574 nm of QDs, the pure PVA and PVA-DDs nanocomposites show an excitation wavelength dependent fluorescent emission property.  相似文献   

6.
For an optimum performance of colloidal nanocrystal devices for a variety of applications such as photonic devices, solar cells and biological labelling, the determining factors are the nanocrystal surface and size. In this work, these two factors have been tuned via wet chemistry to tailor the material properties: The absorption and emission spectra have been tailored by choice of the nanocrystal size; nanocrystal shape by surface modification and photoluminescence (PL) efficiency determined by surface traps, has been tuned via appropriate selection of the nanocrystal capping ligands. Here, we have shown that through ligand-exchange process, the surface of the CdSe quantum dots (QDs) can be modified by replacing the longer-chain ligands of conventional trioctyl phosphine oxide (TOPO) or oleic acid (OA) with shorter-chain ligand of butyl amine. This imparts colloidal stability and water solubility to CdSe QDs for its potential applications in biosensors and biological imaging. It is conjectured that crystallite sizes, oxidation potential of CdSe QDs and stereochemical compatibility of ligands (TOPO, oleic acid and butyl amine) greatly influences the photophysics and photochemistry of CdSe QDs.  相似文献   

7.
An extracellular biosynthesis method has been developed to prepare cadmium selenide (CdSe) quantum dots (QDs) with strong fluorescence emission by incubating cheap Cd and Se inorganic salts with Escherichia coli (E.coli) bacteria. Ultraviolet–visible absorption spectra, photoluminescence (PL) spectra, and high‐resolution transmission electron microscopy analysis showed that the biosynthesised CdSe QDs have an average size of 3.1 nm, the excellent optical properties with fluorescence emission around 494 nm, and the good crystallinity. It was found that addition of 80 mg of mercaptosuccinic acid resulted in the formation of CdSe QDs with highest PL intensity. Furthermore, Fourier‐transform infrared spectra of as‐synthesised CdSe QDs confirmed the presence of a surface protein capping layer. The biosynthesised CdSe QDs were incorporated into the yeast cells as illustrated by laser confocal scanning microscopy images, showing a great potential in bio‐imaging and bio‐labelling application.Inspec keywords: microorganisms, molecular biophysics, fluorescence, visible spectra, nanofabrication, nanobiotechnology, proteins, cellular biophysics, nanostructured materials, wide band gap semiconductors, cadmium compounds, semiconductor quantum dots, II‐VI semiconductors, transmission electron microscopy, photoluminescence, optical microscopy, ultraviolet spectra, Fourier transform infrared spectra, biological techniques, semiconductor growthOther keywords: biocompatible CdSe quantum dots, extracellular biosynthesis method, cadmium selenide quantum dots, high‐resolution transmission electron microscopy analysis, biosynthesised CdSe QDs, Fourier‐transform infrared spectra, Escherichia coli, ultraviolet‐visible absorption spectra, PL intensity, fluorescence emission, photoluminescence spectra, optical properties, surface protein capping layer, laser confocal scanning microscopy images, bioimaging, biolabelling application, yeast cells, f mercaptosuccinic acid, CdSe  相似文献   

8.
《Materials Research Bulletin》2013,48(4):1560-1568
Monodispersed CdSe and PbSe nanoparticles (NPs) as the building blocks could be applied to the all-inorganic nanoparticle solar cells and quantum-dot based solar cells. In the present work, a low-cost preparation route to monodispersed CdSe NPs and PbSe NPs with the particle sizes less than their Bohr radii was present. CdSe NPs and PbSe NPs were synthesized with different preparation conditions, using non-toxic chemicals such as the soluble starch as the capping agent and sodium citrate as the chelating agent of metal ions in aqueous solutions. The effect of preparation conditions on the particle size (∼3–4 nm) of monodispersed cubic phase CdSe NPs, their optical absorption and photo-luminescent spectra were investigated by various measurements and discussed with Brus's effective mass model. Monodispersed cubic phase PbSe NPs with ca. 30–40 nm in size were also obtained, but the smaller sized (<10 nm) PbSe colloids could not be stabilized by this capping agent starch. Further modification need be done to prevent the smaller sized PbSe NPs from growing up.  相似文献   

9.
A. Pourahmad 《Materials Letters》2011,65(17-18):2551-2553
We present a new, simple procedure for the synthesis of lead sulfide quantum dots (QDs) via an ion-exchange reaction. The samples were obtained by sulfidation of the Pb2+ ion-exchanged MCM-41 in a Na2S solution at 25 °C. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and BET (Brunauer–Emmert–Teller) experiments. Exciton absorption peak at higher energy than the fundamental absorption edge of bulk lead sulfide indicate quantum confinement effects in quantum dots as a consequence of their small size. XRD pattern showed the presence of PbS QDs with the size of ~ 2 nm.  相似文献   

10.
不同温度下硒化镉(CdSe)量子点的生长及荧光性研究   总被引:5,自引:1,他引:4  
田红叶  贺蓉  古宏晨 《功能材料》2005,36(10):1564-1567
研究了以氧化镉(CdO)和硒(Se)粉为前驱体,在三辛基膦(TOP)和油酸中合成无机半导体量子点(quantum dots, QDs)CdSe.研究了在不同的反应温度下粒子的生长,通过紫外吸收光谱(UV-Vis)、荧光发射光谱(PL)、透射电子显微镜(TEM)等手段跟踪反应过程并对样品性能进行了表征.实验结果表明,反应温度和反应时间对量子点的生长和荧光性能有很大的影响.  相似文献   

11.
《Optical Materials》2005,27(3):579-584
CdTe nanocrystals were prepared by mechanical alloying the elemental Cd and Te powders. The formation of CdTe with a single cubic phase after 20 h of ball milling was confirmed by X-ray diffraction (XRD). The surface of as-milled CdTe nanoparticles was then capped with polarization TOP/TOPO or (Na3PO4)n organic ligand, which resulted in colorful dispersion solution with optical absorption peaks located at 573 nm and 525 nm, respectively. The third-order non-linearity, namely, the non-linear refraction and two-photon absorption (TPA) coefficient, of the capped CdTe dispersion samples were evaluated using Z-scan technique. The fitting of Z-scan experimental data with a special equation demonstrated that the capped CdTe nanocrystals possess large third-order susceptibilities at resonant wavelength. The non-linear figure of merit (γ/β) for 20 h as-milled CdTe nanocrystals after capping with TOP/TOPO was determined to be ∼ −2 × 10−5 m, which is nearly 215 times larger than the value reported for bulk CdTe crystals.  相似文献   

12.
β-Cyclodextrin was modified with 11-[(ethoxycarbonyl)thio]undecanoic acid and used as a capping agent, together with mercaptosuccinic acid, to prepare water-stable CdTe quantum dots. The water soluble quantum dot obtained displays fluorescence with a maximum emission at 425 nm (under excitation at 300 nm) with lifetimes of 0.53, 4.8, 181, and 44.1 ns, respectively. The S-βCD-MSA-CdTe can act as a nanoprobe that is due to the affinity of the cyclodextrin moiety for selected substances such as acetylsalicylic acid (ASA) and its metabolites as foreign species. The fluorescence of the S-βCD-MSA-CdTe is enhanced on addition of ASA. Linear calibration plots are observed with ASA in concentrations between 0 and 1 mg/l, with a limit of detection at 8.5 × 10? 9 mol/l (1.5 ng/ml) and a precision as relative standard deviation of 1% (0.05 mg/l). The interference effect of certain compounds as ascorbic acid and its main metabolites such as salicylic, gentisic and salicyluric acid upon the obtained procedure was studied.  相似文献   

13.
Luminescence and reflectance spectra of coatings based on gadolinium gallium garnet doped by cerium (GGG/Ce3+) with silicone resin or potassium liquid glass compound were analyzed depending on concentration. It was established that the maximum emissions of the coatings at 75 wt.% compound concentration have luminescence band at 570 nm and absorption band at 470 nm. Both bands were detected by absorption or emission of cerium ions in gadolinium gallium garnet. Ce3+ ion transition into Ce4+ ion was observed upon quantum absorption, and the reverse transition was observed upon quantum emission.  相似文献   

14.
Photoluminescence properties from water soluble CdSe/ZnS QDs encapsulated with hybrid trioctylphosphine-poly(acrylamide-co-acrylic acid)-ethanolamine (TOPO-PSMA-EA) shell have been investigated. It was found that PL efficiency of CdSe/ZnS QDs in water was increased 5–30% after introducing PSMA-EA polymers to encapsulate CdSe/ZnS-TOPO QDs. Higher PSMA concentrations were found to enhance the PL efficiency of QDs up to 1.8 folds, which is ascribed to a better packing and passivation of the TOPO-PSMA-EA shell over the QDs. Time-resolved photoluminescence suggested that the mean lifetime of photoexcited carriers in the water-soluble CdSe/ZnS-TOPO-PSMA-EA QDs elongated 2–17 ns compared with that of uncoated samples, indicating that PL quenching defects were effectively removed for CdSe/ZnS QDs with hybrid TOPO-PSMA-EA shell.  相似文献   

15.
Zn1−xCdxS (x = 0.1, 0.2, 0.3, 0.4, 0.5 … 0.9) quantum dots were synthesized successfully using novel in situ technique in polyvinyl alcohol (PVA) matrix. The PVA acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by X-ray diffraction (XRD), TEM analysis, UV–Visible absorption and photoluminescence spectroscopy (PL). X-ray diffraction patterns revealed cubic zinc blende phase of the samples with lattice parameter in the range 5.47–5.75 Å. Optical band gap values were calculated from the absorption spectra and observed a decreasing band gap with increasing Cd:Zn ratio. The Raman spectra were recorded using conventional Micro Raman technique. Photoluminescence spectra showed asymmetric broad emission with multiple maxima. The concentration dependent quenching of PL intensity with increasing Cd:Zn ratio was observed along with a red shift. The nonlinear optical (NLO) and limiting properties were studied using Z-scan technique.  相似文献   

16.
In this study, a method for the detection of C-reactive protein (CRP) using CdSe and CdSe/ZnS quantum dots (QDs) is proposed. CdSe and CdSe/ZnS core-shell QDs are synthesised by using 2-mercaptosuccinic acid (MSA) as a capping agent. These QDs were then subjected to various characterisation studies, namely X-ray diffraction and transmission electron microscope for size and structure, Fourier transform infrared spectroscopy for the confirmation of functional groups, ultraviolet–visible absorption and fluorescence spectroscopy for optical characteristics and dynamic light scattering for hydrodynamic changes of QDs. Two biochemical mixtures were developed: one by mixing blood serum containing CRP and CdSe-phosphorylethanolamine (PEA) and the other by mixing blood serum with CdSe/ZnS-PEA. When these mixtures are observed for fluorescence due to interaction of QDs with CRP, a correlation between changes in fluorescence for different concentrations of CRP is noted. The result demonstrates that CRP can be detected with the help of QDs without using any antibodies.  相似文献   

17.
Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×10?4 cm2/Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.  相似文献   

18.
ZnS/ZnO quantum dots (QDs) were synthesized by controlled oxidation of ZnS nanoparticles. HRTEM image showed small nanocrystals of size 4 nm and the magnified image of single quantum dot shows interfacial heterostructure formation. The optical absorption spectrum shows a blue shift of 0.19 and 0.23 eV for ZnO and ZnS QDs, respectively. This is due to the confinement of charge carries within the nanostructures. Enormous enhancement in UV emission (10 times) is reported which is attributed to interfacial heterostructure formation. Raman spectrum shows phonons of wurtzite ZnS and ZnO. Phonon confinement effect is seen in the Raman spectrum wherein LO phonon peaks of ZnS and ZnO are shifted towards lower wavenumber side and are broadened.  相似文献   

19.
《Thin solid films》2006,494(1-2):79-83
We demonstrate that InN quantum dots (QDs) can be spontaneously formed on AlN and GaN surfaces by plasma-assisted molecular-beam epitaxy under the Stranski–Krastanow (S–K) mode. Both Si(111) wafers and metal–organic chemical vapor deposition grown GaN/Al2O3(0001) templates were used as substrates in this work. Silicon is particularly interesting as a substrate for InN QD applications because of its electrical conductivity and transparency in the near-infrared. By using reflection high-energy electron diffraction (RHEED), the formation process of InN QDs can be monitored in situ. We observed the 2D–3D transition of S–K growth mode and the lattice constant varied dramatically at the 2D–3D transition point from AlN to InN lattice constant. Furthermore, from the ex situ atomic force microscopy and scanning electron microscopy measurements, we directly imaged InN QDs on the AlN surface with an average diameter of ∼ 14 nm and high areal density of ∼ 1.6 × 1011 cm 2.  相似文献   

20.
《Optical Materials》2010,32(12):1888-1890
Single crystals of CdSe:Cr and CdS:Cr with the doping level up to 1019 cm−3 were grown by a vapor phase contact-free technique. An efficient room-temperature pulsed and continuous wave (CW) lasing with the CdSe:Cr crystal was achieved. First a pulsed lasing with the CdS:Cr crystal was also demonstrated. The slope efficiency on the absorbed energy was as high as 46.5% for Cr2+:CdSe and 39% for Cr2+:CdS lasers. Using an intra-cavity prism, the Cr2+:CdSe laser wavelength was continuously tuned from 2.26 to 3.61 μm while the Cr2+:CdS laser from 2.2 to 3.3 μm. For the laser wavelength, the crystal passive loss coefficient was estimated to be smaller than 0.045 cm−1 for CdSe:Cr crystals and 0.039 cm−1 for CdS:Cr crystals. For the Cr2+:CdSe laser, the CW output power up to 1.07 W was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号