首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对真空变压吸附制氧在gPROMS软件中建立了严格的数学模型,基于LiLSX吸附剂设计了两塔八步的真空变压吸附流程生产纯度为92%的O 2。对此流程进行优化,其纯度和回收率有了明显的改进。在此基础上,引入实际生产中经常存在的如进料流量的变化以及吸附性能降低等扰动因素,使模拟工作更接近实际。根据产品气中O 2纯度的反馈,采用模型辨识技术设计了MPC控制器,用于预测控制VPSA过程的动态行为。开环和闭环控制结果的对比显示,流程在设计的MPC控制下展现出更好的结果,这表明MPC控制策略可以明显改善空气分离制氧的生产过程。  相似文献   

2.
π型向心径向流吸附器变质量流动特性研究   总被引:1,自引:0,他引:1  
对径向流吸附器内变压吸附(PSA)制氧的变质量流动规律进行研究,有助于准确掌握吸附过程及床层内的变量因素对制氧性能的影响。对π型向心径向流吸附器建立气固耦合的两相吸附模型,并对其PSA制氧过程进行了数值模拟研究,得到了床层内氧气浓度分布、温度分布以及产品气浓度的变化规律。结果表明:首次循环结束时床层内氧气最高摩尔分数可达66.02%,回收率29.2%。非稳定循环期间,氧气摩尔分数从66.02%升高至 97.5%,回收率从29.2%提高至38.5%。循环达到稳定后,床层内氧气摩尔分数最高可达98.6%,回收率38.9%左右,且达到稳定状态后床层内气固两相温差减小,逐渐达到热平衡。获得了吸附器内部气体与吸附剂两相间的传质、传热过程,为π型向心径向流吸附器用于PSA制氧提供技术支持。  相似文献   

3.
《分离科学与技术》2012,47(5-6):429-440
Abstract

The specific oxygen production capacity and the oxygen recovery of a pressure swing adsorption (PSA) process for the production of oxygen from ambient air by selective adsorption of nitrogen can be increased by operating the process at a superambient temperature. The higher temperature operation provides more efficient desorption of nitrogen from the adsorbent which more than off-sets the detrimental effects of the lower selectivity and capacity of adsorption of nitrogen from air at the elevated temperature. The concept is demonstrated by evaluating the performance of an eight-step PSA-oxygen process to produce a 90% oxygen product stream at different temperatures. It is shown that 10% higher oxygen production capacity and 14.5% larger oxygen recovery can be obtained by operating the PSA process at 60°C compared to its performance at 30°C. The PSA process and its performance data from a pilot plant are discussed.  相似文献   

4.
变压吸附空分制氮过程的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
卢洪  李成岳 《化工学报》2000,21(5):586-591
建立了一套中试装置 ,对以商业炭分子筛为吸附剂的变压吸附 (PSA)空分制氮循环过程进行了系统研究 .用所建立的数学模型对相应实验进行模拟并将模型预测与实验数据进行比较 ,结果表明模型是可靠的 .  相似文献   

5.
The purification of different components of air, such as oxygen, nitrogen, and argon, is an important industrial process. Pressure swing adsorption (PSA) is surpassing the traditional cryogenic distillation for many air separation applications, because of its lower energy consumption. Unfortunately, the oxygen product purity in an industrial PSA process is typically limited to 95% due to the presence of argon which always shows the same adsorption equilibrium properties as oxygen on most molecular sieves. Recent work investigating the adsorption of nitrogen, oxygen and argon on the surface of silver‐exchanged Engelhard Titanosilicate‐10 (ETS‐10), indicates that this molecular sieve is promising as an adsorbent capable of producing high‐purity oxygen. High‐purity oxygen (99.7+%) was generated using a bed of Ag‐ETS‐10 granules to separate air (78% N2, 21% O2, 1% Ar) at 25°C and 100 kPa, with an O2 recovery rate greater than 30%. © 2012 American Institute of Chemical Engineers AIChE J, 59: 982–987, 2013  相似文献   

6.
Methane steam reforming is the main hydrogen production method in the industry. The product of methane steam reforming contains H_2, CH_4, CO and CO_2 and is then purified by pressure swing adsorption(PSA) technology. In this study, a layered two-bed PSA process was designed theoretically to purify H_2 from methane steam reforming off gas. The effects of adsorption pressure, adsorption time and purgeto-feed ratio(P/F ratio) on process performance were investigated to design a PSA process with more than99.95% purity and 80% recovery. Since the feed composition of the PSA process changes with the upstream process, the effect of the feed composition on the process performance was discussed as well.The result showed that the increase of CH_4 concentration, which was the weakest adsorbate, would have a negative impact on product purity.  相似文献   

7.
Fermentation derived ethanol is gaining wide popularity as a car fuel additive. A major challenge in the production of ethanol is the high energy cost associated with the separation of ethanol from the large excess of water. Distillation is usually the method of choice; however, water cannot be completely removed due to the presence of the azeotrope. The pressure swing adsorption (PSA) process is attractive for the final separation since it requires little energy input and is capable of producing a very pure product. The goal of this work was to perform a thorough analysis of the PSA process and find process improvements with the aid of mathematical modeling.

A general purpose package for the simulation of a cyclic PSA process was developed. The system of partial differential equations was solved via method of lines using a stiff equation integration package. Parameters for the model are based on the data from an operating plant as well as data from the literature. For the ethanol production technology our model provides a fundamental understanding of the dynamics of the cyclic process and effects of some operating parameters.  相似文献   


8.
Techniques for the production of composite oxygen selective adsorbents are disclosed. These adsorbents are comprised of a carbon molecular sieve (CMS) which is kinetically selective for the adsorption of oxygen over nitrogen and an agent for the sorption of water such as LiCl or SiO2. The adsorption properties of the composite adsorbents and results obtained from pressure swing adsorption (PSA) process testing are presented. The composite adsorbents improve the nitrogen PSA process performance (recovery and productivity) over the use of conventional desiccants which do not exhibit oxygen selectivity. Using a standard nitrogen PSA process cycle, replacement of conventional inorganic desiccants like alumina with the current CMS-based desiccants improved air recovery 2 to 4 percentage points and increased nitrogen productivity 15 to 20% at 70°F and a nitrogen purity of 99.5%.  相似文献   

9.
Pressure swing adsorption (PSA) technology is increasingly applied for purification of gases and for bulk separation of most various gas mixtures. Typical product gases are hydrogen, carbon monoxide, ethylene, nitrogen, oxygen and methane. This paper presents an introduction to the technique of PSA plants and gives a survey of current practical applications of adsorption technology in modern process plant complexes.  相似文献   

10.
首先采用实验室自制椰壳活性炭为吸附剂,进行了氮气/甲烷(65%/35%)原料气的真空变压吸附工艺(VPSA)分离实验。通过对比实验和gPROMS 动态模拟软件的分离效果,对变压吸附数学模型进行了验证,证明了所采用数学模型的准确性。在此基础上,对影响产品气甲烷纯度、回收率的关键决策变量进行了灵敏度分析。分析结果表明:产品气纯度主要由原料气流量和置换气流量来进行调控,产品气回收率则需要关键变量共同的作用才能实现最大化。依据灵敏度分析结果,对两塔分离氮气甲烷混合气的变压吸附工艺进行了动态优化。在最优的工况下,可以将进料组成为35%的甲烷富集到75%,回收率达到97.08%;从而达到对于废混合气的高效回收利用。  相似文献   

11.
《分离科学与技术》2012,47(9-10):725-747
Abstract

Bulk separation of a five-component mixture simulating coal gasification products was performed by pressure swing adsorption (PSA) using activated carbon. The PSA cycle consisted of four commercially used steps: (I) pressurization with H2, (II) adsorption, (III) blowdown, and (IV) evacuation. Using this cycle, four products were obtained with a single PSA unit: H2 (over 99.7% purity), CO, CH4, and acid gas (CO2 + H2S). The first three products contained less than 0.001% H2S, and the acid gas was suitable for sulfur recovery. A mathematical model incorporating equilibrium adsorption of mixture and mass transfer resistance (of CO2) was found capable of simulating all steps of the PSA cycle. The model simulation results were in fair agreement with the experimental data. A fundamental understanding of the dynamics of the cyclic process was gained through the model.  相似文献   

12.
变压吸附空分制氧的技术进展   总被引:9,自引:1,他引:8  
李杰  周理 《化学工业与工程》2004,21(3):201-205,219
介绍了近年来变压吸附空分制氧的技术进展情况,分别从空分制氧的工艺和吸附剂的改进状况进行了详细论述,并简单的描述了空分制氧的发展前景。  相似文献   

13.
Experimental results are reported on a pressure swing adsorption (PSA) process using carbon molecular sieve (CMS) for the separation of a gas mixture containing carbon dioxide, hydrocarbons (methane, ethane, propane, etc.) and nitrogen. This PSA process has direct applications in carbon dioxide removal or purification from landfill gas, natural gas processing plants and tertiary oil recovery effluent streams. The CMS-based PSA process separates the carbon dioxide in a single stage by using the differences in component diffusivities. This approach, therefore, provides a significant advantage compared to conventional equilibrium adsorption processes which require one separation stage for removing components such as ethane and propane that are more strongly adsorbed than carbon dioxide and another separation stage for removing components such as methane and nitrogen that are less strongly adsorbed than carbon dioxide. The CMS-based PSA process operates between a feed pressure of 20 to 40 bars and a regeneration pressure of 1.5 bars at ambient temperature and produces a 98+% carbon dioxide product. The PSA process can be integrated with a liquid carbon dioxide plant to produce food grade product.  相似文献   

14.
In order to remove N2 from low quality natural gas, a mathematical model has been established by Aspen adsorption, using the CH4-selective sorbent silicalite-1 pellets. The dynamic adsorption isotherm was first simulated by breakthrough simulation of a CH4/N2 mixture at different adsorption pressures and feed flow rates based on breakthrough experiments. The resulting simulated CH4 dynamic adsorption amounts were very close to the experimental data at three different adsorption pressures (100, 200, and 300 kPa). Moreover, a single-bed, three-step pressure swing adsorption (PSA) experiment was performed, and the results were in good agreement with the simulated data, further corroborating the accuracy of the gas dynamic adsorption isotherm obtained by the simulation method. Finally, based on the simulated dynamic adsorption isotherm of CH4 and N2, a four-bed, eight-step PSA process has been designed, which enriched 75% (vol) CH4 and 80% (vol) CH4 to 95% (vol) and 99% (vol), and provided 99% (vol) recovery.  相似文献   

15.
A pressure swing adsorption (PSA) system using activated carbon impregnated with SnCl 2·2H 2 O and pure activated carbon was used to remove CO from a model H 2/CO mixture representing the steam reformer process gas. On comparing PSA results for both carbons, the CO adsorptive capacity of impregnated carbon was found to be superior to that of the pure carbon. This was confirmed by the fact that the concentration of CO, initially at 1000 ppm, was successfully reduced to 4.02% and 1.04% of its initial concentration by the pure and the impregnated activated carbons respectively in the PSA system. The species in the impregnated carbon responsible for the improved gas phase CO adsorption was found to be SnO 2. Simulation results at a cyclic time of 600 s in the PSA operating at 10 atmospheres gave a product recovery and purity of 99.99% and 57.48%, respectively. At 6 atmospheres, the product recovery and purity were 92.17% and 77.12%, respectively. © 2000 Society of Chemical Industry  相似文献   

16.
By simulations using an equilibrium model, a quantative comparison is made for different pressure swing adsorption (PSA) processes for gas separation. The comparison is based on the performance curve, which is defined as the relationship between product purity and product recovery at a fixed feed throughput.

For bed repressurization in the PSA cycle, the use of the light product yields superior separations compared to that using the feed mixture. For the pressure reduction step, it is found that the separation results are better when the heavy-product purge step is used, as compared to that using cocurrent depressurization. For an ultrahigh-purity light product, however, the PSA process using cocurrent depressurization is superior.

A new PSA process is suggested in which the heavy-product purge step is accomplished by using (or pressure-equalizing with) the effluent from another bed which undergoes the countercurrent blowdown step.  相似文献   

17.
The practical implications of replacing various individual transport resistances such as gas-solid mass and heat transfer, and gas phase axial dispersions of mass and heat in a numerical model of a pressure swing adsorption (PSA) process by a single, empirical, lumped, effective mass transport coefficient were evaluated. A non-isothermal, adiabatic, four-step Skarstrom-like PSA process for production of pure helium from a binary helium-nitrogen mixture using 5A zeolite adsorbent was considered. It was found that the above-described model simplification was adequate to describe key process performances such as the bed size factor and the product recovery vis-a-vis a detailed model where the effects of all individual resistances were explicitly included.  相似文献   

18.
Hydrogen recovery from Tehran refinery off-gas was studied using simulation of PSA (pressure swing adsorption), gas absorption processes and modeling as well as simulation of polymeric membrane process. Simulation of PSA process resulted in a product with purity of 0.994 and recovery of 0.789. In this process, mole fraction profiles of all components along the adsorption bed were investigated. Furthermore, the effect of adsorption pressure on hydrogen recovery and purity was examined. By simulation of one-stage membrane process using co-current model, a hydrogen purity of 0.983 and recovery of 0.95 were obtained for stage cut of 0.7. Also, flow rates and mole fractions were investigated both in permeate and retentate. Then, effects of pressure ratio and membrane area on product purity and recovery were studied. In the simulation of the gas absorption process, gasoline was used as a solvent and product with hydrogen purity of 0.95 and recovery of 0.942 was obtained. Also, the effects of solvent flow rate, absorption temperature, and pressure on product purity and recovery were studied. Finally, these three processes were compared economically. The results showed that the PSA process with total cost of US$ 1.29 per 1 kg recovered H2 is more economical than the other two processes (feed flow rate of 115.99 kmol/h with H2 purity of 72.4 mol%).  相似文献   

19.
用于PEMFC的天然气水蒸气制氢系统   总被引:1,自引:0,他引:1       下载免费PDF全文
代磊  李明  胡鸣若 《化工学报》2009,60(Z1):90-94
针对质子交换膜燃料电池(PEMFC)的应用要求,开发了一个包括天然气水蒸气重整、CO变换和变压吸附净化的制氢工艺过程,并着重对重整反应和变压吸附的操作条件进行了实验研究。考察了温度、空速和水碳比对重整反应的影响,得到适宜的工艺操作条件,实验结果表明:温度650℃、水碳比6、空速42h-1时,氢气含量为70.21%,甲烷转化率为77.41%;分析了温度、流速对变压吸附脱除CO效果的影响,结果表明:在0.2MPa、40℃和吸附、脱附时间120s的条件下,产品气中CO浓度接近于1×10-6,经过多次循环后产品气质量稳定,可以连续获得满足80W质子交换膜燃料电池要求的高纯度氢气。  相似文献   

20.
《分离科学与技术》2012,47(14-15):2379-2396
Abstract

Pressure swing adsorption (PSA) processes for air separation differ by the modes and conditions of operation of the adsorption, the desorption, and the complementary steps, as well as by the types of adsorbents used. Three commercial PSA processes for air separation are reviewed and compared. The first process uses a zeolitic adsorbent and produces only an oxygen-enriched product gas. The second process uses a carbon molecular sieve and produces only a nitrogen-enriched product gas. The third process uses a zeolite and simultaneously produces both oxygen-and nitrogen-enriched product gases. The performance and separation efficiency of the last process, called the ‘vacuum swing adsorption (VSA) process’, are reported to be superior to the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号