共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
特征选择和分类器参数优化是提高人体行为识别率的关键技术,针对当前模型没有考虑两者之间的联系不足,为了提高人体行为的识别率,提出了一种特征选择和分类器参数优化联合进行的人体行为识别模型。首先,分析当前人体行为识别研究的现状,并建立人体行为识别特征和分类器参数优化的数学模型;然后,利用改进粒子群算法对数学模型进行求解,建立最优的人体行为识别模型;最后,通过仿真实验测试其性能。结果表明,其模型克服了人体行为识别模型的缺陷,提高了人体行为识别率,识别速度也要快于对比模型。 相似文献
3.
4.
《计算机应用与软件》2014,(1)
亚健康状态是一种介于健康和疾病之间的低质量状态。研究的目的是要确定哪些因素或因素组合能够针对亚健康状态进行预测。临床流行病学调查,获取572个实际案例(其中,523宗均为亚健康状态,49宗为健康),在报告中包括了50种相关症状。应用随机森林分类技术进行基于临床数据分析的亚健康状态预测,正确分类率为91.28%。由50倍随机森林方法所得到的特征选择(症状),即疲劳、心悸、四肢肌无力、疲劳程度和悲观态度是重要的判别变量。相关实验结果显示了提出方法的可行性与高效性。 相似文献
6.
特征选择有助于增强集成分类器成员间的随机差异性,从而提高泛化精度。研究了随机子空间法(RandomSub-space)和旋转森林法(RotationForest)两种基于特征选择的集成分类器构造算法,分析讨论了两算法特征选择的方式与随机差异程度之间的关系。通过对UCI数据集引入噪声,比较两者在噪声环境下的分类精度。实验结果表明:当噪声增加及特征关联度下降时,基本学习算法及噪声程度对集成效果均有影响,当噪声增强到一定程度后。集成效果和单分类器的性能趋于一致。 相似文献
7.
在对文本进行分类时,大量的冗余特征会增加计算复杂度并降低分类的精度,因此需要对特征进行降维.论文提出了一种类依赖(CD)特征选择算法,通过训练集计算出所有文档的关联值(DR),根据类别,分别计算出对应类的阈值(CT),依次提取出大于阈值的文档中的最大特征,得到了对应类的特征向量,以确保每个类别都有不同数量的特征.仿真结果表明,与IG-PSO和GA两种特征选择算法相比,CD特征选择算法根据类别选择特征子集,使得分类的准确率和F1指标得到提升. 相似文献
8.
针对网络入侵中特征选择与分类器参数不匹配问题,提出一种特征选择和分类器优化耦合的网络入侵检测模型(F-SVM)。通过径向基核函数将网络特征的评估标准映射至高维空间进行计算,建立网络特征评估和后续网络入侵分类器之间的联系,在特征选择阶段解决了分类器的参数设计问题,建立网络入侵检测模型,并采用KDD 99数据集对F-SVM的性能进行测试。结果表明,F-SVM不仅可以消除无用、冗余特征,网络特征的维数显著降低,而且获得了网络入侵分类器的最优参数,从而提高了网络入侵检测的正确率和检测效率。 相似文献
9.
针对在分类问题中,数据之间存在大量的冗余特征,不仅影响分类的准确性,而且会降低分类算法执行速度的问题,提出了一种基于多目标骨架粒子群优化(BPSO)的特征选择算法,以获取在特征子集个数与分类精确度之间折中的最优策略。为了提高多目标骨架粒子群优化算法的效率,首先使用了一个外部存档,用来引导粒子的更新方向;然后通过变异算子,改善粒子的搜索空间;最后,将多目标骨架粒子群算法应用到特征选择问题中,并利用K近邻(KNN)分类器的分类性能和特征子集的个数作为特征子集的评价标准,对UCI数据集以及基因表达数据集的12个数据集进行实验。实验结果表明,所提算法选择的特征子集具有较好的分类性能,最小分类错误率最大可以降低7.4%,并且分类算法的执行时间最多能缩短12 s,能够有效提高算法的分类性能与执行速度。 相似文献
10.
针对朴素贝叶斯(NB)分类器在分类过程中存在诸如分类模型对样本具有敏感性、分类精度难以提高等缺陷,提出一种基于多种特征选择方法的NB组合文本分类器方法。依据Boosting分类算法,采用多种不同的特征选择方法建立文本的特征词集,训练NB分类器作为Boosting迭代过程的基分类器,通过对基分类器的加权投票生成最终的NB组合文本分类器。实验结果表明,该组合分类器较单NB文本分类器具有更好的分类性能。 相似文献
11.
Nedim Muzoğlu Ahmet Mesrur Halefoğlu Muhammed Onur Avci Melike Kaya Karaaslan Bekir Sıddık Binboğa Yarman 《Expert Systems》2023,40(1):e13141
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine–Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach. 相似文献
12.
高维复杂数据处理是数据挖掘领域中的关键问题,针对现有特征选择分类算法存在的预测精确度失衡、整体分类效率低下等问题,提出了一种结合概率相关性和极限随机森林的特征选择分类算法(P-ERF)。该算法使用充分考虑特征之间相关性与P值结合的特征选择方式,避免了树节点分裂过程中造成的冗余性问题;并以随机树为基分类器、极限随机森林为整体框架,使P-ERF算法获得了更高的精准度和更好的泛化误差。实验结果表明,P-ERF算法相较于随机森林算法、极限随机森林算法,在数据集分类精度与整体性方面均得到良好的效果。 相似文献
13.
为了更全面地对文本进行特征选择,提高文本特征选择的准确率,提出一种基于野草算法的文本特征选择方法,利用野草算法中子代个体按正态分布的方式分布于父代个体周围,在进化过程中通过动态调整子代个体正态分布的标准差,使算法在早期与中期充分保持种群多样性的优势,对文本进行比较全面的特征选择;在算法后期加强对优秀个体的特征选择,保证算法稳健地收敛到全局最优解,提高文本特征选择的准确率。实验结果表明,这种方法可以给予权重值低的词条进行特征选择的机会,并且保证权重值高的词条特征选择优势,从而提高文本特征选择的全面性和准确性。 相似文献
14.
特征选择(也称作属性选择)是简化数据表达形式,降低存储要求,提高分类精度和效率的重要途径。实际中遇到的大量的数据集包含着不完整数据。对于不完整数据,构造选择性分类器同样也可以降低存储要求,提高分类精度和效率。因此,对用于不完整数据的选择性分类器的研究是一项重要的研究课题。有鉴于此,提出了一种用于不完整数据的选择性贝叶斯分类器。在12个标准的不完整数据集上的实验结果表明,给出的选择性分类器不仅分类准确率显著高于非常有效地用于不完整数据的RBC分类器,而且分类性能更加稳定。 相似文献
15.
针对医学图像中存在的灰度对比度低、器官组织边界模糊等问题,提出一种新的随机森林(RF)特征选择算法用于鼻咽肿瘤MR图像的分割。首先,充分提取图像的灰度、纹理、几何等特征信息用于构建一个初始的随机森林分类器;随后,结合随机森林特征重要性度量,将改进的特征选择方法应用于原始手工特征集;最终,以得到的最优特征子集构建新的随机森林分类器对测试图像进行分割。实验结果表明,该算法对鼻咽肿瘤的分割精度为:Dice系数79.197%,Acc准确率97.702%,Sen敏感度72.191%,Sp特异性99.502%。通过与基于传统随机森林和基于深度卷积神经网络(DCNN)的分割算法对比可知,所提特征选择算法能有效提取鼻咽肿瘤MR图像中的有用信息,并较大程度地提升小样本情况下鼻咽肿瘤的分割精度。 相似文献
16.
特征选择是数据挖掘和机器学习领域中一种常用的数据预处理技术。在无监督学习环境下,定义了一种特征平均相关度的度量方法,并在此基础上提出了一种基于特征聚类的特征选择方法 FSFC。该方法利用聚类算法在不同子空间中搜索簇群,使具有较强依赖关系(存在冗余性)的特征被划分到同一个簇群中,然后从每一个簇群中挑选具有代表性的子集共同构成特征子集,最终达到去除不相关特征和冗余特征的目的。在 UCI 数据集上的实验结果表明,FSFC 方法与几种经典的有监督特征选择方法具有相当的特征约减效果和分类性能。 相似文献
17.
针对目前大部分钓鱼网站检测方法存在检测准确率低、误判率高等问题,提出了一种基于特征选择与集成学习的钓鱼网站检测方法。该检测方法首先使用FSIGR算法进行特征选择,FSIGR算法结合过滤和封装模式的优点,从信息相关性和分类能力两个方面对特征进行综合度量,并采用前向递增后向递归剔除策略对特征进行选择,以分类精度作为评价指标对特征子集进行评价,从而获取最优特征子集;然后使用最优特征子集数据对随机森林分类算法模型进行训练。在UCI数据集上的实验表明,所提方法能够有效提高钓鱼网站检测的正确率,降低误判率,具有实际应用意义。 相似文献
18.
针对传统的偏最小二乘法只考虑单特征的重要性以及特征之间存在冗余和多重共线性等问题,将特征之间的统计相关性引入到传统的偏最小二乘分析中,构造了一种基于特征相关的偏最小二乘模型。首先利用特征相关度对特征进行评估预选出特征组,然后将其放入偏最小二乘模型中进行训练,评估该特征组是否可取。结合前向贪心搜索策略依次评价候选特征,并选中使目标函数最小的候选特征加入到已选特征。分别采用麻杏石甘汤君药止咳、平喘和UCI数据集进行分析处理,实验结果表明,该特征选择方法能较好寻找较优的特征组。 相似文献
19.
基于流量突发性、源IP地址的分散性、流非对称性等单一手段进行DDoS攻击检测,存在准确率低,虚警率高等问题。利用条件随机场不要求严格独立性假设与综合多特征能力的优点,提出了基于CRF模型融合特征规则集实现对DDoS攻击的检测方法,采用单边连接密度OWCD、IP包五元组熵IPE组成多维特征向量,仿真结果表明,在DARPA2000数据集下,检测准确率达99.82%、虚警率低于0.6%,且在强背景噪声干扰下无明显恶化。 相似文献