首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Advanced Powder Technology》2014,25(4):1266-1272
This work aimed to use the waste zinc-dust from a hot-dip galvanizing plant for the synthesis of nanosized ZnO photocatalyst powder via hydrothermal treatment. ZnO particles with different morphologies and sizes were obtained by varying the solution pH (8–12) and the amount of hydroxypropyl cellulose (HPC) dispersant (0–0.15% (w/v)) under hydrothermal treatment at 170 °C for 8 h. The influence of the preparation conditions on the properties of resultant ZnO particles were evaluated by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, laser light scattering and Brunauer–Emmett–Teller analyses. The solution pH affected the crystallinity, particle morphology and specific surface area of the obtained ZnO, which in turn influenced its photocatalytic activity. The addition of the optimum amount of HPC (0.1% (w/v)) in the starting solution acted as a dispersant to reduce ZnO particle agglomeration but had the opposite effect at higher levels. Moreover, ZnO nanorods with various aspect ratios and a diameter and length range of 20–70 nm and 100–400 nm, respectively, were obtained depending on the amount of added HPC. The photocatalytic activity of the synthesized ZnO powder was improved by the addition of the optimal amount of HPC, and correlated to the particle dispersion and specific surface area.  相似文献   

2.
Synthesis of high surface area ZnO powder was achieved by continuous precipitation using zinc ions and urea at low temperature of 90 °C. The powder precipitated resulted in high-purity single-phase ZnO powder when calcined at 280 °C for 3 h in air. The solution pH and the precipitation duration strongly affected the surface area of the calcined ZnO powder. Detailed structural characterizations demonstrated that the synthesized ZnO powder were single crystalline with wurtzite hexagonal phase. The powdered samples precipitated by homogeneous precipitation crystallized directly to hydrozincite without any intermediate phase formation.The phase structures, morphologies and properties of the final ZnO powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering particle size analysis (DLS), and nitrogen physisorption in order to determine the specific surface area (BET) and the pore size distribution (BJH).  相似文献   

3.
《Composites Science and Technology》2007,67(11-12):2521-2527
The focus of this work is to study nanofibers in three different polymers: polyvinyl alcohol (PVA), polypropylene (PP) and polyethylene (PE). The nanofibers were isolated from a soybean source by combining chemical and mechanical treatments. Isolated nanofibers were shown to have diameter between 50 and 100 nm and the length in micrometer scale which results in very high aspect ratio. The mechanical properties demonstrated an increase in tensile strength from 21 MPa of PVA/UNF5 (untreated-fiber (5 wt%) reinforced PVA) and 65 MPa of pure PVA to 103 MPa of PVA/SBN5 (nanofiber (5 wt%) reinforced PVA). The increased stiffness of PVA/SBN5 nanocomposites was also very promising; it was 6.2 GPa compared to 2.3 GPa of pure PVA and 1.5 GPa of PVA/UNF5. In solid phase melt-mixing, nanofiber was directly incorporated into the polymer matrix using a Brabender. The nanofiber addition significantly changed the stress–strain behavior of the composites: modulus and stress were increased with coated nanofibers by ethylene–acrylic oligomer emulsion as a dispersant; however, elongation was reduced. The dynamic mechanical analysis showed the addition of the soybean nanofiber (SBN) improved the thermal properties for PVA and how the addition of different contents of SBN influenced the tan δ peak and storage modulus of PVA.  相似文献   

4.
The nanocomposite powders of γ-alumina-carbon nanotube were successfully synthesized by a sol–gel process. The homogeneous mixture of carbon nanotubes and alumina particles was obtained by mixing the carbon nanotubes within alumina solution and followed by heating into gel. The resultant gel was dried and calcined at 200 °C into boehmite-carbon nanotubes composite powders. The mean particle size of synthesized boehmite was of the order of 4 nm. The boehmite-carbon nanotubes composite powders were calcined at different temperatures and XRD investigations revealed that as the amount of carbon nanotube increases, γ- to α-alumina phase transformation is completed at higher temperatures. The specific surface area and mean particle size of resultant nanocomposite powders increased and decreased, respectively by increasing the content of carbon nanotubes.  相似文献   

5.
The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 −1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.  相似文献   

6.
Micron-sized nanoporous silver powder with pore size of ~100–160 nm and specific surface area of ~4.7–5.5 m2/g was synthesized from three mechanically alloyed Ag-Zn powders (composition: 25, 50 and 75 at.% Zn). Dealloying was carried out at free corrosion conditions in NaOH, HCl and AgNO3 solutions. Both partial and complete dealloying were obtained by suitable choice of electrolyte and time of exposure. Zn in the solution after dealloying was recovered in the form of ZnO nanoparticles with particle size of 55.7 ± 18 nm. The effect of composition and electrolyte on the degree of dealloying was also studied.  相似文献   

7.
Nanocrystalline calcium aluminates with different CaO:Al2O3 and surfactant/metal ion molar ratios were prepared by wet chemical synthesis method using Poly (ethylene glycol)-block-poly(propylene glycol)-block poly(ethylene glycol) (PEG–PPG–PEG, MW:5800) as surfactant. X-ray diffraction (XRD) and N2 adsorption–desorption results showed that the increase in CaO:Al2O3 ratio decreased the specific surface area and increased the particle sizes of prepared samples while the surfactant/metal ion molar ratios were kept constant. These analyses also declared that for the sample with CaO:Al2O3 = 1:2 (CA2) addition of polymeric surfactant increased the specific surface area and decreased the crystallite size. Scanning electron microscopy (SEM) results confirmed that size of particles for CaO:Al2O3 = 1:6 (CA6) sample are smaller than CA2. Transmission electron microscopy (TEM) revealed no particular particle shape for the CA2 sample but it showed the high degree of crystallinity and single phase for the prepared sample at 1100 °C.  相似文献   

8.
Nanoscale MgAl2O4 powders were synthesized via a microwave-assisted solution combustion process using various mixtures of urea, glycine and starch as fuel. The effects of starch addition on characteristics (e.g. specific surface area and crystallite size) of the as-resulted powders were also investigated. The experimental results revealed that the specific surface area of the powders was significantly increased as the starch content rose from 0 to 35.6 wt.%, followed by a slight decrease when it was further raised to 54.7 wt.%. The scanning electron microscope micrographs disclosed that starch addition also affected the morphology of porous nanoparticles’ agglomerates and was remarkably beneficial to dissipate the as-produced nanoparticles. Higher degree of dissipation and larger specific surface area of the powders resulted from starch addition were mainly attributed to a larger amount of gases evolved during combustion and/or lower combustion temperature.  相似文献   

9.
While the majority of commercial ordinary portland cement (OPC) is ground using a ball mill or a vertical roller mill, other industries have shown that jet mill grinding can be an alternative approach for grinding materials. This paper investigates the potential application of jet mill grinding for two systems. The first system is a blend of OPC and 15% limestone, and the second system is a blend of OPC and 40% fly ash. It was observed that when jet mill grinding is used, the average particle size of the powders is decreased to approximately 4 μm or less with a narrower particle size distribution than that achieved using ball milling. In addition to evaluating the size and shape of the particles obtained from the jet mill grinding process, this paper focuses on evaluating, using isothermal calorimetry, the effect these changes in particle size and distribution have on the extent and rate of hydration as well as their effect on the compressive strength of cement pastes or mortars.This study also investigated differences between inter-grinding and blending separately ground materials to form an OPC/limestone mixture. Both inter-ground and separately ground OPC/limestone mortars demonstrated an accelerated hydration at early ages accompanied by an increase in early age strength. This appears to be primarily due to the increased surface area of the finer particles that provides more available surface for the hydration reaction. The inter-grinding appeared to be more effective than grinding the materials separately because an improved graded particle size distribution was obtained. The inter-ground OPC/limestone mixture shows accelerated initial hydration at water to powder ratios (w/p, where powder = cement + limestone) of 0.50 and 0.35 when compared with the samples before grinding. At the lower w/p of 0.35, the OPC/limestone mixture appears much more efficient. In the OPC/fly ash mixture, jet mill grinding also accelerates the rate of hydration and strength development.  相似文献   

10.
β-Tricalcium phosphate (β-TCP) with three different particle size ranges was used to study the effects of particle size and surface area on protein adsorption and release. Polycaprolactone (PCL) coating was applied on the particle systems to investigate its effect on particulate system properties from both structural and application aspects. The maximum loading of 27 mg/g was achieved for 100 nm particles. Bovine serum albumin (BSA) loading amount was controlled by varying the BSA loading solution concentration, as well as the sample powder's surface area. Increasing the surface area of the delivery powder significantly increased loading and release yield. Unlike the samples with low surface area, the lowest particle size samples showed sigmoidal release profile. This indicated that release was governed by different mechanisms for particles with different sizes. While the majority of samples showed no more than 50% release, the 550 nm particles demonstrated 100% release. PCL coating showed no significant ability to attenuate burst release in PBS. However, it led to a steadier release profile as compared to the bare TCP particles. FTIR analysis also proved that the secondary structure of BSA did not change significantly during the adsorption; however, minor denaturation was found during the release. The same results were found when PCL coating was applied on the TCP particles. We envision potential use of TCP and TCP + PCL systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering application.  相似文献   

11.
The aim of this study is to prepare silanized polymeric nanoparticles for DNA isolation. Polymeric p(HEMA)-IMEO-PBA nanoparticles around 85.7 nm diameter, was obtained by surfactant free emulsion polymerization for DNA isolation. Synthesized nanoparticles for characterization studies were realized scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zeta-size. Surface area, average particle size and size distribution were also performed. The surface area of synthesized silanized polymeric nanoparticles was 2460 m2/g. Synthesized polymeric nanoparticles were silanized with 3-(2-imidazoline-1-yl)propyl (triethoxysilane) (IMEO). After that, phenylboronic acid (PBA) which is DNA specific ligand were covalently binded to silanized polymeric nanoparticles. The amount of DNA adsorbed onto the p(HEMA)-IMEO-PBA nanoparticles first increased and then reached a saturation value at around 14.0 mg/mL of DNA concentration. The maximum adsorption was 672.41 mg/g silanized polymeric nanoparticles in the optimum adsorption medium. The maximum DNA adsorption was achieved at 4 °C. The overall recovery of DNA was calculated as 95%. In repetitive adsorption–desorption circles, it is observed not being important decrease in DNA adsorption capacities. The results were shown that silanized polymeric nanoparticles can be a good alternative for DNA isolation.  相似文献   

12.
ZnO nanoparticles were synthesized solvothermally in various diols (ethylene glycol, di(ethylene glycol), tetra(ethylene glycol), 1,2-propanediol, 1,4-butanediol), using basic zinc carbonate (2ZnCO3·3Zn(OH)2) as a precursor for the first time. Since ZnCO3 was sparingly soluble in diols the transformation reaction proceeded at a low reaction rate. Ethylene glycol was found as the most suitable medium among five diols studied yielding the smallest ZnO particles (~ 55 nm) and short reaction time, tr (2 h). Diols with shorter chain length produced smaller ZnO particles. p-Toluene sulfonic acid (p-TSA) acted as a catalyst and reduced tr from 8 h to 2 h in concentration of 0.02 M. Optimum reaction conditions for the synthesis in ethylene glycol were 185 °C and 2 h. At higher p-TSA concentrations (0.04–0.08 M) the size of ZnO particles was reduced from 500–800 nm to 50–100 nm and crystallite size to 25–30 nm. Benzene sulfonic acid (BSA) and inorganic bases (LiOH, NaOH, and KOH) also showed catalytic activities. Raman and photoluminescence spectroscopies revealed high concentration of defects on ZnO surface causing the emission of visible light and giving this type of ZnO higher potential in various (opto)-electronic application in comparison to Zn(II) acetate based ZnO.  相似文献   

13.
Cupric sulfide, CuS, was ground by a planetary ball mill under various experimental conditions, including variations in rotation speed and grinding time. The changes in crystal structure, lattice parameter, particle size, pore structure, and specific surface area in the ground powders were determined. With regard to the CuS ground at 700 rpm, the changes of the crystal structure were more remarkable than those of the CuS ground at 300 rpm. The crystallite size decreased (from 18.5 to 8.4 nm) and the lattice strain increased (from 1.60% to 3.09%) in the CuS ground at 700 rpm. Moreover, the lattice parameter a increased, while the lattice parameter c decreased. Grinding at 300 rpm is favorable for inducing changes of the physical properties, such as the growth of pore volume and specific surface area.  相似文献   

14.
Cerium-doped yttrium aluminum garnet (YAG:Ce) powder was synthesized by the Pechini method with aluminum nitride, yttrium nitride, citric acid and ethylene glycol as the starting materials. Structure, morphology and luminescence spectra were investigated by using X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy measurements. The pure YAG phase was formed after heat treatment at 800 °C for 3 h and no intermediate phase was observed. The average size of the particles was about 70 nm. The photoluminescence spectrum of the crystalline YAG:Ce phosphors showed the green-yellow emission with 5d  4f transition as the most prominent group.The increase of the ethylene glycol:citric acid molar ratio, resulted in a powder with smaller particle size and better luminescence properties.  相似文献   

15.
In this work, the effect of SiC particle size and its amount on both physical and mechanical properties of Al matrix composite were investigated. SiC of particle size 70 nm, 10 μm and 40 μm, and Al powder of particle size 60 μm were used. Composites of Al with 5 and 10 wt.% SiC were fabricated by powder metallurgy technique followed by hot extrusion. Phase composition and microstructure were characterized. Relative density, thermal conductivity, hardness and compression strength were studied. The results showed that the X-ray diffraction (XRD) analysis indicated that the dominant components were Al and SiC. Densification and thermal conductivity of the composites decreased with increasing the amount of SiC and increased with increasing SiC particle size. Scanning electron microscope (SEM) studies showed that the distribution of the reinforced particle was uniform. Increasing the amount of SiC leads to higher hardness and consequently improves the compressive strength of Al–SiC composite. Moreover, as the SiC particle size decreases, hardness and compressive strength increase. The use of fine SiC particles has a similar effect on both hardness and compressive strength.  相似文献   

16.
The urchin-like ZnO microcrystals with high crystallinity decomposed from [Zn(OH)4]2? directly were obtained via a hydrothermal method. The morphology, particle size, crystalline structure and fluorescence of the as-prepared ZnO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) analyses. The results demonstrated that the urchin-like ZnO crystals with wurtzite structure had a narrow distribution in size, which could be adjusted in the range of 30–80 μm by varying reaction time. Broad visible light emission peak was also observed in the PL spectra of the synthesized ZnO products. A multistep growth process about how to form such a structure was proposed.  相似文献   

17.
This article describes the synthesis of silica-coated Ag nanoparticles using a water-soluble nanoparticle micelle under basic conditions. Monodispersed Ag nanoparticles with a mean particle size of 7 nm were synthesized using AgNO3 in the presence of ascorbic acid as a reducing agent. The Ag nanoparticles were easily re-dispersed into an aqueous solution by surface adsorption of surfactant molecules, indicating formation of water-soluble nanoparticle micelles. Silica-coated Ag nanoparticles ranging in size from 50 to 100 nm were obtained by controlling the surfactant, Ag nanoparticle and tetraethylortho silicate (TEOS) concentrations. Adsorbed surfactant monolayers on Ag nanoparticles were used as a template for the silica shell because of the hydrophobicity of TEOS. In all cases, the size of the resulting particles increased linearly as these concentrations increased. Based on transmission electron microscopy, all the Ag nanoparticles were completely covered with a silica shell. In most samples, however, Ag nanoparticle size increased from 7 to 50 nm due to evaporation of hexane by heating. Although mean particle size of silica-coated Ag nanoparticles was drastically altered, characteristic absorption peaks were observed at approximately 410 nm.  相似文献   

18.
In the present study, polyacrylamide gel method was applied for synthesis nanosized sulfated zirconia powders, first time. An assessment of the influence of calcination temperature and sulfate ion loading on the properties of synthesized powders was performed and the samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy and thermal analysis. The results revealed that tetragonal phase was obtained on calcination at 500 °C and was stable towards higher temperatures (650 °C). The increase of crystallite size with increasing calcination temperature was observed. Calcination for long duration time led to evolution of some sulfur species, furthermore results in higher particle size (∼100–200 nm) as compared to calcination for short duration time resulting in lower particle size (<50 nm). The presence of sulfate had no significant effect on thermal stability of polyacrylamide gel network whereas structure and the nature of the sulfur species bound with the zirconia surface are affected by the sulfur content.  相似文献   

19.
The results of current investigation demonstrate that mechanochemical processing can be used to synthesize high purity Fe2B nanocrystals by selecting well-optimized milling conditions, reaction paths and proper starting materials. Microstructure, phase analyses, specific surface area, and magnetic properties of the synthesized nanocrystals were examined by using X-ray diffraction/spectroscopy, electron microscopy, nitrogen adsorption–desorption methods following Brunauer-Emmett-Teller equation and vibrating sample magnetometer techniques, respectively. Removal of MgO impurity phase by leaching the resulting powder in the acetic acid solution yielded single phase Fe2B nanocrystals with the crystallite size and specific surface area of 12.5 nm and 29 m2/g, respectively. Magnetization results clearly indicated the ferromagnetic behavior of Fe2B nanocrystals with saturation magnetization observed around 96.26 emu·g?1. Electron microscope images revealed coaxial/spherical powder shape and morphology of the single-phase Fe2B nanocrystals.  相似文献   

20.
In this study, the antimicrobial substance, silver nanoparticles (Ag NPs) loaded in poly (vinyl alcohol) (PVA) nanowire mats were fabricated by conjugation of the electro-spinning method and the microwave-assisted process. The best PVA nanowire mats were fabricated by through control of electro-spinning conditions, which were applied for fabrication of Ag NPs loaded in PVA nanowires. PVA was used not only as a carrier for loading of Ag NPs but also as a reduction agent with which the Ag+ ion was already reduced to a large number of Ag NPs by irradiation with a microwave. Ag NPs were synthesized inside the PVA solution depending on the time of microwave irradiation — whether for 60 s or 90 s. Size distribution of Ag NPs was 5–10 nm in diameter for 60 s; and 10–20 nm in diameter for 90 s of irradiation. Presence of Ag NPs acquired through microwave assisted irradiation was confirmed by X-ray diffraction profiles (XRD). Microstructure, particle size distribution, and morphology of both the nanowire mats and the Ag particles were investigated using SEM and TEM techniques. The effect of Ag-NPs on the PVA mechanical property of nano-fibrous mats was investigated according to tensile strength. Antibacterial activity of PVA loaded Ag NPs at different irradiation times was tested on Gram-positive bacteria, Staphylococcus aureus Gram-negative bacteria, and Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号