共查询到17条相似文献,搜索用时 62 毫秒
1.
基于麦克风小阵的多噪声环境语音增强算法 总被引:1,自引:0,他引:1
针对助听器等设备在非平稳或多种噪声并存环境下使用效果急剧下降的问题,提出一种基于小尺寸麦克风阵的相干滤波广义旁瓣抵消(CF-GSC)语音增强算法。该算法结合麦克风阵采集信号的特点,对各阵元间采集时表现为弱相关的海浪、风扇等近似白噪声,以及采集时表现为强相关的点源信号及其他竞争噪声,分别利用相干滤波和传统广义旁瓣抵消(GSC)结构对弱相关与强相关噪声的良好滤除效果,结合语音活动检测(VAD)在噪声段进行联合处理。仿真实验表明在多类噪声存在环境下,该算法能取得相对改进的通道间相干函数滤波算法及传统广义旁瓣抵消算法2 dB左右的增强效果提升,同时能获得良好的话音可懂度。 相似文献
2.
结合小波滤波器组理论和自适应波束形成技术,提出了一种基于宽带波束形成的麦克风阵列语音增强方法。该方法利用小波分析滤波器组将含噪语音信号变换到小波域;进行小波域阵列自适应波束形成;通过小波综合滤波器组重构增强后的语音信号。计算机仿真实验验证了该方法的有效性。 相似文献
3.
4.
5.
双麦克风噪声抵消应用中,由于交叉串的存在,传统自适应算法降噪性能受到很大的影响。为了提高双麦克风算法降噪性能,使用两级自适应滤波系统消除交叉串扰问题。为提高自适应滤波器收敛性能,采用主从结构LMS算法自适应调节步长因子。同时为了适合窄带处理算法,将输入信号进行子带分析预处理,对每个子带独立进行抗交叉串绕自适应处理,将各子带增强信号合并得到增强语音信号。实验结果表明,该方消噪量大,语音损伤小,语音增强效果显著。 相似文献
6.
在噪声环境下双麦克风语音增强应用中,由于麦克风之间存在交叉串扰,传统自适应对消算法降噪性能受到极大的哪影响.为了提高降噪系统性能,提出了一种基于神经元网络双麦克风自适应抗交叉串扰语音增强方法.该方法通过设置两级自适应算法,消除了麦克风之间的交叉串扰,其中自适应算法均采用神经元网络对消方法.算法仿真基础上,运用DSP制作了实时降噪处理样机.测试结果表明,采用新方法后,系统噪声抑制性能得到了很大的提高. 相似文献
7.
为解决现有语音增强算法需要麦克风数量较多和受估计误差影响较大的问题,提出一种改进的声源定位和波束形成方法。在现有声源定位算法利用时间延迟的基础上,引入能量衰减参数,实现利用双麦克风进行声源定位的目标;在波束形成算法中引入加载系数,在出现协方差矩阵统计失配时仍可对期望方向聚焦,提高波束形成算法的鲁棒性。仿真结果表明,改进后的算法与传统算法相比具有更强的鲁棒性。 相似文献
8.
当广义旁瓣抵消器(Generalized sidelobe canceller,GSC)结构的语音增强算法对语音信号的入射方向角估计不准确时,阻塞矩阵(Blocking matrix,BM)不能完全阻塞目标语音,使得部分语音通过阻塞矩阵,在后期多输入抵消器(Multiple-input canceller,MC)模块中和参考信号相抵消,造成目标语音的损失。针对广义旁瓣抵消器因信号到达方向(Direction of arrival,DOA)估计误差而导致语音泄漏的问题,本文提出了一种麦克风阵列语音增强的优化算法,先对经过时延补偿的信号进行频谱调整,再利用MC模块输出与BM模块输出存在相关性的特点,对阻塞矩阵进行自适应调整,使方向估计参数更趋近于真实目标语音方向,以减少阻塞矩阵中目标语音的泄漏。仿真结果表明,该算法
可以有效减少阻塞矩阵中目标语音的泄漏、增强系统的鲁棒性以及提高语音增强效果。 相似文献
9.
语音通信为最普通的一种通信模式,在我们的日常生活中发挥着极为关键的效果.然而,在客观场景内,声音势必会因噪音而产生影响.此类噪声与干扰不但会影响声音的可知性,还使声音处理系统的性能急剧恶化.但是,在现实环境中,声音受到噪音和干扰是不可避免的.这些噪声和干扰不仅影响声音的可知性,还使声音处理系统的性能急剧恶化.麦克风阵列语音增强为语音增强中最普遍的一种模式.文章具体讲解了几类比较普遍的麦克风阵列增强算法以及语音扩展算法的仿真处理结果,语音扩展算法可以从噪音声音中尽可能地提取清晰的声音,从而提高语音质量和主观舒适性. 相似文献
10.
文章介绍了各种基本的麦克风阵列语音增强算法,对其消噪性能进行了系统地分析,并以实测数据进行了测试。并介绍了基于稳健波束形成器、近场超定向波束形成器、广义奇异值分解和传输函数广义旁瓣相消器等结构的麦克风阵列语音增强的基本原理,总结了各种算法的特点及其所适用的声学环境特性。 相似文献
11.
介绍了一种用于近场麦克风阵列后滤波语音增强的方法,避免了现有的利用自功率谱密度和互功率谱密度的Zelinski和McCowan后滤波器中噪声功率谱过估计的问题,并加入了近场传播的幅度衰减补偿和相位延迟补偿。使用卡内基梅隆大学提供的多麦克风语音数据以及使用Habets E A P提出的生成阵列散射噪声的方法进行的仿真实验,证明了改进的方法在语音质量客观评估量方面优于Zelinski后滤波法和McCowan后滤波法。 相似文献
12.
语音增强的目标在于从含噪信号中提取纯净语音,纯净语音在某些环境下会被脉冲噪声所污染,但脉冲噪声的时域分布特征却给语音增强带来困难,使传统方法在脉冲噪声环境下难以取得满意效果。为在平稳脉冲噪声环境下进行语音增强,提出了一种新方法。该方法通过计算确定脉冲噪声样本的能量与含噪信号样本的能量之比最大的频段,利用该频段能量分布情况逐帧判别语音信号是否被脉冲噪声所污染。进一步地,该方法只在被脉冲噪声污染的帧应用卡尔曼滤波算法去噪,并改进了传统算法执行时的自回归(AR)模型参数估计过程。实验中,采用白色脉冲噪声以及有色脉冲噪声污染语音信号,并对低输入信噪比的信号进行语音增强,结果表明所提出的算法能显著地改善信噪比和抑制脉冲噪声。 相似文献
13.
针对基于隐马尔科夫(HMM,Hidden Markov Model)的MAP和MMSE两种语音增强算法计算量大且前者不能处理非平稳噪声的问题,借鉴语音分离方法,提出了一种语音分离与HMM相结合的语音增强算法。该算法采用适合处理非平稳噪声的多状态多混合单元HMM,对带噪语音在语音模型和噪声模型下的混合状态进行解码,结合语音分离方法中的最大模型理论进行语音估计,避免了迭代过程和计算量特别大的公式计算,减少了计算复杂度。实验表明,该算法能够有效地去除平稳噪声和非平稳噪声,且感知评价指标PESQ 的得分有明显提高,算法时间也得到有效控制。 相似文献
14.
传统的谱减法无法有效地抑制实际语音通信中的非平稳噪声,为了进一步提高谱减法的去噪性能,提出了一种改进的噪声估计算法,首先将带噪语音的功率谱按照Bark频率进行子带划分,然后分别在每个子带内利用改进的最小统计量控制递归平均方法跟踪噪声的变化,从而在准确估计非平稳噪声的功率谱的同时减少计算量。将该算法应用到谱减法中,并与传统的增强型谱减法进行对比实验,实验结果表明:改进的谱减法能够更好地去除各种非平稳噪声,而且能够有效抑制“音乐噪声”,使得增强后的语音具有更好的音质。 相似文献
15.
提出了一种基于二次离散小波变换(DWT)的语音增强算法。该算法首先对带噪语音信号进行离散小波变换,提取离散细节信号,并对其进行第二次离散小波变换。再按照不同的规则选取阈值,对信号进行去噪处理。最后再对出来后的语音信号进行合并。对比实验结果表明,该方法具有良好的消除噪声的效果,提高了语音的清晰度和可懂度。 相似文献
16.
针对语音系统受外界强噪声干扰而导致识别精度降低以及通信质量受损的问题,提出一种基于自适应噪声估计的语音增强方法。通过端点检测将语音信号分为语音段与非语音段,对这两种情况的噪声幅度谱分别进行自适应估计,并对谱减法中不具有通用性的假设进行研究从而改进原理公式。实验结果表明,相对于传统谱减法,该方法能更好地抑制音乐噪声,并保持较高清晰度和可懂度,提高了强噪声环境下的语音识别精度和通信质量。 相似文献
17.