首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
本文对5×5螺旋十字型棒束(HCF)组件进行热工水力实验,获得了HCF组件的阻力系数和交混系数。测量了螺旋十字型棒束组件的沿程压降,并拟合了阻力系数关系式。基于能量平衡法对HCF组件的交混特性进行了分析。将低温水直接注入棒束组件的子通道中,通过测温导管将T型热电偶固定在子通道的中心位置,并测量了各子通道内的水温分布。HCF组件内的横向交混由湍流交混和流动后掠组成,定义等效交混系数来分析HCF组件内的横向交混率。HCF组件的等效交混系数不随雷诺数的增加而明显变化,其均值为0.019。将等效交混系数输入子通道分析程序Cobra-tf中,计算了子通道内的水温分布。结果表明,水温分布的实验值和计算值符合良好,平均偏差为0.16 ℃。  相似文献   

2.
采用壁面热分配模型对PSBT基准题中的5×5均匀加热全长棒束过冷沸腾传热进行了数值模拟研究,分析了均匀加热全长棒束通道中不同子通道和加热元件表面参数沿轴向的发展过程和径向的分布特性。研究发现,角通道和边通道是弱对流区域,其质量流速低于棒束平均值,但由于冷棒功率偏低,消除了流动不均衡性对传热效果的影响。在棒束径向方向,不同位置子通道间参数场存在差异,这是由于位于搅混格架横向导流对角方向的通道具有更有效的通道间对流效果,其传热效果更好。这种流动特性引起的参数差异在角通道中尤为显著。热棒表面过热度明显高于冷棒过热度,且位于非搅混格架横向导流方向的热棒具有更高的壁面过热度。  相似文献   

3.
为获得稠密布置燃料组件的阻力系数,应用稠密带缠绕丝棒束进行实验研究,拟合阻力系数关系式,并将关系式与经典Rehme关系式进行比较分析。结果表明Rehme关系式不适用于本实验棒束。同时应用计算流体力学(CFD)方法、剪切应力输运模型(SST)湍流模型对实验进行模拟,获得棒束内部的流动形式、压力场和沿程阻力系数,并与实验结果进行对比。结果表明CFD方法可作为预测稠密带缠绕丝棒束单相流动阻力系数的参考。  相似文献   

4.
分别以实验与数值模拟对5×5棒束通道压降特性进行了研究。在5×5棒束通道实验本体上开展了压降实验研究,雷诺数范围为2000~14000。获得了棒束通道内压降随雷诺数的变化关系,并在实验工况范围内拟合了摩擦阻力系数计算经验关系式,关系式对摩擦阻力系数的预测偏差在5%以内。在实验研究基础上,开展了棒束通道内压降数值研究。对于雷诺数低于2000的工况选取层流模型,雷诺数高于2000的工况选取标准k-ε模型、Realized k-ε模型、RNG k-ε模型与LPS-RSM等湍流模型,开展了棒束通道内流场数值模拟,并拟合了层流工况下高精度摩擦阻力系数计算关系式。数值模拟结果表明,雷诺数较高时,标准k-ε模型、Realizedk-ε模型、RNG k-ε模型与LPS-RSM等湍流模型均能较好地预测摩擦阻力特性。  相似文献   

5.
描述了棒束子通道内流速分布,壁面剪应力分布和湍流雷诺应力张量分布的实验研究。由四根棒组成的棒束平行对称地布置在一个矩形流道内。试验棒的中心距与棒直径之比为:P/D=1.148,而壁距与棒直径之比分别为W_1/D=1.045和W_2/D=1.074。两种不同几何条件下,实验中雷诺数分别为6.11×10~4和7.07×10~4。实验结果表明,棒束子通道内的湍流结构与圆管内的湍流结构有很大差别。特别是在棒和通道壁之间的窄缝区存在着相当强的轴向和周向湍流强度,因而那里也有相当强的湍流动能,这显然是由于通过棒-壁窄缝处强烈的湍流脉动流所造成的。和过去进行的非对称布置的子通道实验(子通道具有相同几何参数P/D及W/D,但与相邻子通道几何非对称地布置于同一矩形通道内)相比,发现对称子通道情况下子通道之间通过棒-棒窄缝处的湍流动量迁移则很小,可以忽略不计。壁面剪应力分布的实验值和用VELASCO程序计算结果相对比,发现两者之间有明显的差异,尤其是在棒-壁窄缝区,差异更大。建议有必要发展比现有程序更为完善的分析计算程序,以便提高对棒束子通道湍流流动的计算精度。  相似文献   

6.
描述了棒束子通道内流速分布,壁面剪应力分布和湍流雷诺应力张量分布的实验研究。由四根棒组成的棒束平行对称地布置在一个矩形流道内。试验棒的中心距与棒直径之比为:P/D=1.148,而壁距与棒直径之比分别为W_1/D=1.045和W_2/D=1.074。两种不同几何条件下,实验中雷诺数分别为6.11×10~4和7.0×10~4。实验结果表明,棒束子通道内的湍流结构与圆管内的湍流结构有很大差别。特别是在棒和通道壁之间的窄缝区存在着相当强的轴向和周向湍流强度,因而那里也有相当强的湍流动能,这显然是由于通过棒-壁窄缝处强烈的湍流脉动流所造成的。和过去进行的非对称布置的子通道实验(子通道内有相同几何参数P/D及W/D,但与相邻子通道几何非对称地布置于同一矩形通道内)相比,发现对称子通道情况下子通道之间通过棒-棒窄缝处的湍流动量迁移例很小,可以忽略不计。壁面剪应力分布的实验值和用VELASCO程序计算结果相对比,发现两者之间有明显的差异,尤其是在棒—壁窄缝区,差异更大。建议有必要发展比现有程序更为完善的分析计算程序,以便提高对棒束子通道湍流流动的计算精度。  相似文献   

7.
同一软件工具采用不同湍流模型进行燃料组件格架棒束通道CFD分析时会得到不同的数值结果,本文采用ANSYS CFX软件,建立了包含典型5×5格架的棒束通道CFD模型,研究了涡粘和雷诺应力两大类6种典型湍流模型对燃料组件压降与换热特性数值结果的影响,计算了压降和Nu分布结果与相似的实验结果进行对比,通过分析3个典型搅混效果评价因子,探讨了搅混翼流动与换热的内在影响关系,同时对比了不同湍流模型对结果的影响。通过与相似实验数据对比分析,认为雷诺应力模型较适宜计算本文所研究的定位格架及棒束通道内流动传热特性。  相似文献   

8.
在压水堆燃料组件的定位格架下游,局部扰动沿流动方向逐渐衰减,流场最终趋于稳定。光滑棒束区冷却剂的湍流流动和交混特性是影响反应堆经济性和安全性的重要因素,有必要进行深入研究。本文采用粒子图像测速(PIV)与数值模拟(CFD)相结合的方法,对3×3小规模棒束内水的流动特性进行研究,得到了一阶平均流速以及二阶湍流统计信息。结果表明,中心子通道的速度明显高于棒间隙区,但轴向均方根速度呈现出相反的变化趋势。在相邻子通道横向速度梯度的作用下,棒束内出现了大尺度的流量脉动现象,且脉动波长随雷诺数的增加而增大。此外,实验得到的湍流交混系数较压水堆采用的Castellana公式预测值偏高10%左右,这一偏差随雷诺数的增加有减小的趋势。  相似文献   

9.
棒束燃料元件受辐照发生肿胀或弯曲变形易导致局部阻塞事故,可能造成局部冷却剂蒸干,严重威胁燃料包壳的完整性。因此有必要针对局部阻塞条件下棒束通道内的流场及阻力特性进行研究。本实验采用粒子图像测速(PIV)技术对局部阻塞条件下5×5棒束通道的流场特性进行了可视化测量,获得了不同类型子通道(边、角、中心子通道)在阻塞条件下的流场及压力数据。结果表明,漩涡在阻塞物两侧壁面生成,沿壁面增大到一定程度后脱落,并在下游形成回流区。随着阻塞率的增大,漩涡的尺寸及影响范围不断增大;随着雷诺数的增大,漩涡从阻塞物附近不断向下游扩散。流道内局部阻力系数随阻塞率的增大呈非线性增加趋势。  相似文献   

10.
快堆燃料组件棒束通道内流动和传热现象分析与研究   总被引:3,自引:3,他引:0  
利用三维计算流体力学软件CFX 12.0对由7根带螺旋状定位绕丝的燃料棒组成的快堆燃料组件典型棒束通道内的流动和传热现象进行了数值模拟。模拟得到不同Re下的压降系数曲线与Nu曲线,并将计算结果与经验公式的计算结果进行了比较,两者符合较好。研究了组件内3类典型子通道的横向流交混效应,分析了3类典型子通道的横向流分布特点,发现角子通道横向流交混强度沿轴向波动较大,而3类子通道的横向流交混强度均存在周期性。研究了中心燃料棒壁面上3个截面的局部换热效应,发现在燃料棒与绕丝接触处传热效果最差,在事故分析时应重点关注。  相似文献   

11.
The special geometric structure of the rod bundle channel can induce complicated flow transition of the coolant, and investigation on the flow transition rules is sufficiently important. In the current study, experimental and numerical study on the flow transition characteristics in the 5×5 rod bundle channel was carried out. Experiments were performed to obtain the variation characteristics of the resistance coefficient and CFD simulation was performed using different turbulence models in ANSYS Fluent. The results show that the simulation with SST k-ω turbulence model agrees well with the experimental data. The simulated turbulence intensity and resistance coefficient at different measurement locations and in different flow conditions were compared. For different subchannels, the turbulence intensity and the resistance coefficient are higher in the center subchannel than those in the edge subchannel. For the same subchannel, the turbulence intensity and the shear stress in the subchannel center are higher than those in the subchannel edge. This result indicates that the turbulence intensity, shear stress and resistance coefficient in the rod bundle are not uniform due to the influence of the wall surface. This non-uniform spatial interaction makes the transition point obscure.  相似文献   

12.
An analytical calculation has been performed to predict the turbulent friction factor in a rod bundle. For each subchannel constituting a rod bundle, the geometry parameters are analytically derived by integrating the law of the wall over each subchannel with the consideration of a local shear stress distribution. The correlation equations for a local shear stress distribution are supplied from a numerical simulation for each subchannel. The explicit effect of a subchannel shape on the geometry parameter and the friction factor is reported. The friction factor of a corner subchannel converges to a constant value, while the friction factor of a central subchannel steadily increases with a rod distance ratio. The analysis for a rod bundle shows that the friction factor of a rod bundle is largely affected by the characteristics of each subchannel constituting a rod bundle. The present analytic calculations well predict the experimental results from the literature with rod bundles in circular, hexagonal, and square channels.  相似文献   

13.
稠密栅元不同子通道内湍流流动的RANS和URANS模拟   总被引:1,自引:0,他引:1  
本工作采用RANS和非稳态雷诺平均纳维斯托克斯模拟(URANS)方法对稠密栅元内典型子通道——中心通道和壁面通道内的湍流流动进行CFD模拟。研究分析了稠密栅元子通道内的不同周向角度的主流速度、壁面剪应力、湍动能等参数。将模拟计算结果和实验测量结果进行对比,结果表明:RANS模拟在采用各向异性的湍流模型的情况下能较好地模拟P/D较大的稠密栅元通道,但对于P/D较小(P/D<1.1)的稠密栅元通道,CFD结果和实验数据存在较大差距。相比之下,URANS方法可模拟紧密栅元子通道间隙区的大尺度、准周期的流动振动,从而和实验数据拟合良好。推荐采用雷诺应力湍流模型(SSG,ORS)进行RANS模拟,而采用SAS湍流模型进行URANS模拟。  相似文献   

14.
Experimental results are presented on fully developed turbulent flow through simulated heterogeneous rod bundle subchannels. The emphasis of this study is on the universality of the cross-gap turbulence convection transport with respect to symmetric versus asymmetric subchannels. The flow passage was formed by a rod asymmetrically mounted in a trapezoidal duct. The Reynolds number based on the equivalent hydraulic diameter and bulk average axial velocity is 26 300. The measurements include mean axial velocities, r.m.s. values of the fluctuating velocity components and the energy density spectra. The results demonstrate the existence of an unusual region near the asymmetric rod-to-wall gap characterized by high levels of axial turbulence intensity with a remarkably different type of distribution compared with a normal boundary layer. It is also shown that the strength of the cross-gap transport is subchannel geometry dependent. The distributions of wall shear stress and turbulence kinetic energy indicate that mean convection by secondary flow is also an important transport mechanism that should be taken into account in the analysis of momentum/heat transfer in rod bundle subchannels.  相似文献   

15.
Local velocity and turbulence intensity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 × 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create area reductions of 70 and 90% in the center four subchannels of the bundle. Experimental results indicated that extensive flow disturbances existed downstream from the blockage clusters and showed that only minor disturbances can be expected upstream from the blockages. Recirculation zones for both 70 and 90% blockages were detected downstream from the blockage clusters and persisted for approximately three to five subchannel hydraulic diameters, depending on the degree of the blockage. The experimental velocity results obtained with blockage clusters located midway between grid spacers were successfully predicted using the COBRA subchannel computer program.  相似文献   

16.
基于粒子图像测速(PIV)技术开展了低雷诺数(Re)条件下5×5棒束通道内充分发展段的流场可视化研究,试验Re从310~12296内选择了22组工况进行研究。试验结果表明:在低Re下,棒束通道内部的相对速度梯度较大,随着Re的上升,棒束通道内速度趋向于均匀化分布;通过阻力特性观察到的棒束通道中转捩相对于圆管较为模糊,转捩Re为900左右;在低Re效应的影响下,无量纲速度均方根随Re的增大而减小,而在转捩Re附近出现了无量纲速度均方根随Re的增大而增大的现象;此外该试验可以用于验证湍流模型对于不同Re的适用性。   相似文献   

17.
Large eddy simulation (LES) of turbulent flow in a bare rod bundle was performed, and a new concept about the flow structure that enhances heat transport between subchannels was proposed. To investigate the geometrical effect, the LES was performed for three different values of rod diameter over pitch ratio (D/P = 0.7, 0.8, 0.9). The computational domain containing 4 subchannels was large enough to capture large-scale structures wide across subchannels. Lateral flow obtained was unconfined in a subchannel, and some flows indicated a pulsation through the rod gap between subchannels. The gap flow became strong as D/P increased, as existing experimental studies had reported. Turbulence intensity profile in the rod gap suggested that the pulsation was caused by the turbulence energy transferred from the main flow to the wall-tangential direction. This implied that the flow pulsation was an unsteady mode of the secondary flow and arose from the same geometrical effect of turbulence. This implication was supported by the analysis results: two-points correlation functions of fluctuating velocities indicated two length-scales, P-D and D, respectively of cross-sectional and longitudinal motions; turbulence stress in the cross-sectional mean flow contained a non-potential component, which represented energy injection through the unsteady longitudinal fluid motion.  相似文献   

18.
In this paper, both steady and unsteady Reynolds Averaged Navier Stokes (RANS and URANS) methodology are applied to the prediction of turbulent flow inside different subchannels in tight lattice bundles.Two typical configurations of subchannels (i.e., wall subchannel and center subchannel) are chosen to be investigated. In this work the application of different turbulence models implemented in the commercial code CFX v12 is shown. The validity of the methodology is assessed by comparing computational results of axial velocity, wall shear stress and turbulent intensity distributions with the experimental data (Krauss, 1996; Krauss and Meyer, 1998). This study shows that RANS simulation with anisotropic turbulent model produces excellent agreement with experiment, whereas it failed to predict the flow behavior accurately in the case of tightly packed geometries (P/D < 1.1). On the other hand, the URANS simulation is in good agreement with the results in tightly packed geometries with flow oscillation in the gap region. The effects of the Reynolds number and the bundle geometry on the flow oscillation are investigated in details.  相似文献   

19.
为研究压水反应堆燃料组件棒束通道内的两相分布规律,设计并制造了适用于棒束通道的丝网传感器模块,开展了5×5棒束通道内空气-水泡状流的空泡分布测量实验,分析了棒束通道内空泡份额的分布规律及气泡尺寸对空泡分布的影响。实验结果表明,发生横升力方向反转的小气泡在壁面附近聚集、大尺寸气泡则聚集在子通道中心;常温常压下发生横升力方向反转的临界气泡直径在4~6 mm之间,证明了横升力模型在棒束通道中的适用性。   相似文献   

20.
Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30° or 20° they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer; the swirling flow inside a subchannel could reach farther downstream than the cross flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号