首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
目的 高光谱图像的高维特性和非线性结构给聚类任务带来了"维数灾难"和线性不可分问题,以往的工作将特征提取过程与聚类过程互相剥离,难以同时优化。为了解决上述问题,提出了一种新的嵌入式深度神经网络模糊C均值聚类方法(EDFCC)。方法 EDFCC算法为了提取更加有效的深层特征,联合优化高光谱图像的特征提取和聚类过程,将模糊C均值聚类算法嵌入至深度自编码器网络中,可以保持两任务联合优化的优势,同时利用深度自编码器网络降维以及逼近任意非线性函数的能力,逐步将原始数据映射到潜在特征空间,提取数据的深层特征。所提方法采用模糊C均值聚类算法约束特征提取过程,学习适用于聚类的高光谱数据深层特征,动态调整聚类指示矩阵。结果 实验结果表明,EDFCC算法在Indian Pines和Pavia University两个高光谱数据集上的聚类精度分别达到了42.95%和60.59%,与当前流行的低秩子空间聚类算法(LRSC)相比分别提高了3%和4%,相比于基于自编码器的数据聚类算法(AEKM)分别提高了2%和3%。结论 EDFCC算法能够从高光谱图像的高维光谱信息中提取更加有效的深层特征,提升聚类精度,并且由于EDFCC算法不需要额外的训练过程,大大提升了聚类效率。  相似文献   

2.
为减少高光谱遥感图像光谱空间冗余,降低后续处理的计算复杂度,提出一种基于最大最小距离的高光谱图像波段选择算法。首先计算波段标准差,选定标准差最大的波段作为初始中心;然后使用最大最小距离算法得到相对距离较远的聚类中心,对波段进行聚类;最后使用K中心点算法更新聚类中心。实验仿真结果表明:通过基于最大最小距离算法选择的波段,能够选出同时满足信息量大、相关性小的要求的波段子集,并将获得的波段组合用于高光谱图像分类时,可以得到较好的分类精度。  相似文献   

3.
目的 高光谱图像波段数目巨大,导致在解译及分类过程中出现“维数灾难”的现象。针对该问题,在K-means聚类算法基础上,考虑各个波段对不同聚类的重要程度,同时顾及类间信息,提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法。方法 首先,引入波段权重,用来刻画各个波段对不同聚类的重要程度,并定义熵信息测度表达该权重。其次,为避免局部最优聚类,引入类间距离测度实现全局最优聚类。最后,将上述两类测度引入K-means聚类目标函数,通过最小化目标函数得到最优分类结果。结果 为了验证提出的高光谱图像分类方法的有效性,对Salinas高光谱图像和Pavia University高光谱图像标准图中的地物类别根据其光谱反射率差异程度进行合并,将合并后的标准图作为新的标准分类图。分别采用本文算法和传统K-means算法对Salinas高光谱图像和Pavia University高光谱图像进行实验,并定性、定量地评价和分析了实验结果。对于图像中合并后的地物类别,光谱反射率差异程度大,从视觉上看,本文算法较传统K-means算法有更好的分类结果;从分类精度看,本文算法的总精度分别为92.20%和82.96%, K-means算法的总精度分别为83.39%和67.06%,较K-means算法增长8.81%和15.9%。结论 提出一种基于熵加权K-means全局信息聚类的高光谱图像分类算法,实验结果表明,本文算法对高光谱图像中具有不同光谱反射率差异程度的各类地物目标均能取得很好的分类结果。  相似文献   

4.
高光谱图像的波段范围广、光谱分辨率高,能为图像分类研究提供丰富的信息,但同时也给计算和存储带来了较大困难.论文提出一种基于SNMF聚类与类间可分性因子的方法来进行高光谱图像波段选择,以降低计算和存储开销.首先是数据预处理工作,将高光谱数据进行三维转二维表达,然后利用SNMF聚类算法得到波段的各个类簇,最后以各波段的类间可分性因子为指标在类簇内进行波段选择.实验采用波段子集的平均信息熵、平均相关系数和平均相对熵三类指标进行定量评价,并采用SVM分类器进行分类验证.  相似文献   

5.
基于自动子空间划分的高光谱数据特征提取   总被引:7,自引:0,他引:7  
针对遥感高光谱图像数据量大、维数高的特点,提出了一种自动子空间划分方法用于高光谱图像数据量减小处理。该方法主要包括3个处理步骤:数据空间划分,子空间主成分分析和基于类别可分性准则的特征选择。该方法充分利用了高光谱图像各波段数据之间的局部相关性,将整个数据划分为若干个具有较强相关性的独立子空间,然后在子空间内利用主成分分析进行特征提取,根据各类地物间的类别可分性选择有效特征,最后利用地物分类来验证该方法的有效性。实验结果表明,该方法能够有效地实现高光谱图像数据维数减小和特征提取,同现有的自适应子空间分解方法和分段主成分变换方法相比,该方法所提取的特征用于分类时能获得较好的分类精度。利用该方法进行处理,当高光谱数据维数降低了90%时,9类地物分类实验的总体分类精度可以达到80.2%。  相似文献   

6.
针对现有高光谱图像变分自编码器(variational autoencoder,VAE)分类算法存在空间和光谱特征利用效率低的问题,提出一种基于双通道变分自编码器的高光谱图像深度学习分类算法。通过构建一维条件变分自编码器(conditional variational autoencoder,CVAE)特征提取框架和二维循环通道条件变分自编码(channel-recurrent conditional variational autoencoders,CRCVAE)特征提取框架分别提取高光谱图像的光谱特征和空间特征,将光谱特征向量和空间特征向量叠加形成空谱联合特征向量,将联合特征送入Softmax分类器中进行分类。在Indian pines和Pavia University两种高光谱数据集上进行了分析验证,实验结果显示,与其他算法相比,提出的算法在总分类精度、平均分类精度和Kappa系数等评价指标上至少提高了3.40、2.75和3.57个百分点,结果显示提出的算法得到了最高的分类精度和更好的可视化效果。  相似文献   

7.
基于波段聚类的高光谱图像波段选择   总被引:1,自引:0,他引:1  
为使无监督的波段选择能够更好地保留高光谱图像的信息,提出一种基于波段聚类的高光谱图像无监督波段选择方法.首先,计算高光谱图像各波段间的互信息,以此衡量各波段间的相关程度;然后,根据各波段间的互信息,对波段集合进行聚类;通过迭代使得各波段分组自动地聚集在信息量较大且具有代表性的波段周围,直到各聚类中心不再变化,则聚类结束.通过波段聚类过程保证了冗余波段的去除和有用信息的保留,最后,以各聚类中心波段作为所选的波段组合.实验结果证明,与传统方法相比,使用文中的方法选择波段,能够更有效地保留光谱信息,得到更高的分类精度.  相似文献   

8.
聚类与自适应波段选择结合的高光谱图像降维   总被引:1,自引:0,他引:1  
针对自适应波段选择法(adaptive band selection,ABS)对高光谱图像降维后得到的最优波段子集用于地物目标分类处理时,分类精度不理想的问题,提出一种K-means聚类与ABS结合的高光谱图像降维方法。算法采用K-means聚类算法对所有波段进行聚类,聚类中分别采用相关系数和欧氏距离2种相似性度量,选取各聚类中ABS指数最大的波段,作为最优波段子集。通过实验,将所提方法与ABS进行分类精度比较。实验结果表明,所提方法在分类精度上优于ABS法,以相关系数作为相似性度量的K-means聚类与ABS结合的降维方法分类效果更好。  相似文献   

9.
针对深度连续聚类算法(Deep Continuous Clustering, DCC)特征提取能力有限,对复杂图像不能提取足够有效细节特征的不足,本文提出一个新的循环卷积自编码器(Recurrent Convolutional Auto-Encoder, R-CAE).自编码器结合门控循环网络GRU和卷积网络CNN构造编码层;同时在门控循环网络GRU部分添加空间域注意力通道,增强网络的特征学习能力.图像信息经过R-CAE自编码器编码后获取细节信息,传入经典卷积神经网络学习特征;当优化结果接近或者达到聚类阈值的时候,获得最终的聚类结果实现分类.训练过程中,模型首先预训练,确定自编码器参数;然后结合编码部分和经典网络学习训练,微调网络参数.本文通过实验证明了改进方法结合DCC在聚类实验中优于大部分经典聚类算法,在针对真实图像的细粒度分类实验中也有显著的进步.  相似文献   

10.
子空间聚类(Subspace clustering)是一种当前较为流行的基于谱聚类的高维数据聚类框架.近年来,由于深度神经网络能够有效地挖掘出数据深层特征,其研究倍受各国学者的关注.深度子空间聚类旨在通过深度网络学习原始数据的低维特征表示,计算出数据集的相似度矩阵,然后利用谱聚类获得数据的最终聚类结果.然而,现实数据存在维度过高、数据结构复杂等问题,如何获得更鲁棒的数据表示,改善聚类性能,仍是一个挑战.因此,本文提出基于自注意力对抗的深度子空间聚类算法(SAADSC).利用自注意力对抗网络在自动编码器的特征学习中施加一个先验分布约束,引导所学习的特征表示更具有鲁棒性,从而提高聚类精度.通过在多个数据集上的实验,结果表明本文算法在精确率(ACC)、标准互信息(NMI)等指标上都优于目前最好的方法.  相似文献   

11.
李玉  甄畅  石雪  朱磊 《控制与决策》2021,36(5):1119-1126
针对分类过程中如何合理利用高光谱影像波段问题,提出一种基于波段影像统计量加权K-means聚类的高光谱影像分类算法.该算法的核心思想在于:由波段含有的信息量及波段间的相关性确定各波段权重,同时考虑各波段对各聚类的重要性.首先,根据波段影像的熵、标准差及均值定义波段信息量函数,根据相邻波段影像互信息定义相关性函数;其次,由上述波段信息量函数及波段间相关性函数定义波段权重函数;然后,结合波段权重和波段-类属权重定义规则化目标函数;最后,依据参数特性设计目标函数求解方案.对Salinas高光谱影像和Pavia Centre高光谱影像分别采用所提出的算法与传统K-means算法、PCA$+K$-means算法及子空间波段选择$+K$-means算法进行对比实验,对于总精度及Kappa系数,所提出的算法都高于其他3种对比算法,结果验证了所提出算法的有效性.相对于其他3种算法而言,所提出的算法可有效改善高光谱影像分类的性能.  相似文献   

12.
高光谱数据在物质分类识别领域得到了广泛应用,但存在数据量大、波段间相关性高等问题,严重影响分类精度及应用。针对以上问题分析了已有的波段选择方法,提出了基于波段聚类及监督分类的遗传算法,对高光谱数据进行波段选择:采用[K]均值聚类算法对波段数据进行聚类分析,构造波段子集合;利用分类器族分类精度构造适应度函数,采用遗传算法对波段子集合进行优化选择。最后用阔叶林高光谱数据对提出的算法进行对比实验,实验结果表明针对分类应用,提出的算法能够非常有效地选择高光谱谱段。  相似文献   

13.
为了减少高光谱图像数据中的冗余信息,优化计算效率,并提升图像数据后续应用的有效性,提出一种基于邻域熵(NE)的高光谱波段选择算法.首先,为了高效计算样本的邻域子集,采用了局部敏感哈希(LSH)作为近似最近邻的搜索策略;然后,引入了NE理论来度量波段和类之间的互信息(MI),并把最小化特征集合与类变量之间的条件熵作为选取...  相似文献   

14.
张伍  陈红梅 《计算机应用》2020,40(1):258-263
为了减少高光谱波段图像间的冗余,降低运算时间,为后续分类任务提供有效支持,提出了基于核模糊粗糙集的高光谱波段选择算法。高光谱图像相邻波段间相似性较强,为进一步有效地度量波段的重要性,引入核模糊粗糙集理论。考虑波段中类的分布特性,根据波段的下近似集分布定义波段间的相关性,进而结合波段的信息熵定义波段的重要度。采用最大相关性最大重要度的搜索策略对高光谱图像进行波段选择。最后在常用高光谱数据集Indiana Pines农业区上,采用J48及KNN分类器进行测试。与其他高光谱波段选择算法相比,该算法在两个分类器上的总体平均分类精度分别提升了4.5和6.6个百分点。实验结果表明所提算法在处理高光谱波段选择问题时具有一定优势。  相似文献   

15.
结合遗传算法和蚁群算法的高光谱图像波段选择   总被引:2,自引:1,他引:1       下载免费PDF全文
随着遥感技术和成像光谱仪的发展,高光谱遥感图像的应用越来越广泛,但其自身的特点给高光谱图像的分类、识别等带来了很大的困难.如何快速地从高达数百个波段的高光谱图像中选择出具有较好分类识别能力的波段组合是亟待解决的问题.针对上述问题分析了已有的波段选择方法,提出一种结合遗传算法和蚁群算法的高光谱图像波段选择方法.该算法首先利用遗传算法以较快的寻优能力获得几组较优解,以此来初始化蚁群算法的初始信息素列表,然后用蚁群算法以较高的求精解能力获得最优解,并且在遗传算法部分中采用四进制的编码方式,使得算法编/译码简单、遗传算子操作简捷、且处理时所占空间小,同时在蚁群算法部分中巧妙地对预处理图像进行子空间划分来缩小蚂蚁搜索的范围,提高了算法的搜索效率,减小了输出波段组合的相关性和冗余度.由于该算法充分地吸取遗传算法和蚁群算法的优点、克服各自的缺陷,是一种计算耗时少、收敛性能好的波段选择方法.利用AVIRIS(airborne visible infrared imaging spectrometer)图像对提出的算法进行实验,实验结果表明,本文算法在所选波段性能和计算耗时方面都获得令人满意的效果.  相似文献   

16.
Feature weighting based band selection provides a computationally undemanding approach to reduce the number of hyperspectral bands in order to decrease the computational requirements for processing large hyperspectral data sets. In a recent feature weighting based band selection method, a pair‐wise separability criterion and matrix coefficients analysis are used to assign weights to original bands, after which bands identified to be redundant using cross correlation are removed, as it is noted that feature weighting itself does not consider spectral correlation. In the present work, it is proposed to use phase correlation instead of conventional cross correlation to remove redundant bands in the last step of feature weighting based hyperspectral band selection. Support Vector Machine (SVM) based classification of hyperspectral data with a reduced number of bands is used to evaluate the classification accuracy obtained with the proposed approach, and it is shown that feature weighting band selection with the proposed phase correlation based redundant band removal method provides increased classification accuracy compared to feature weighting band selection with conventional cross correlation based redundant band removal.  相似文献   

17.
Hyperspectral images usually consist of hundreds of spectral bands, which can be used to precisely characterize different land cover types. However, the high dimensionality also has some disadvantages, such as the Hughes effect and a high storage demand. Band selection is an effective method to address these issues. However, most band selection algorithms are conducted with the high-dimensional band images, which will bring high computation complexity and may deteriorate the selection performance. In this paper, spatial feature extraction is used to reduce the dimensionality of band images and improve the band selection performance. The experiment results obtained on three real hyperspectral datasets confirmed that the spatial feature extraction-based approach exhibits more robust classification accuracy when compared with other methods. Besides, the proposed method can dramatically reduce the dimensionality of each band image, which makes it possible for band selection to be implemented in real time situations.  相似文献   

18.
Band selection is widely used to identify relevant bands for land-cover classification of hyperspectral images. The combination of spectral and spatial information can improve the classification performance of hyperspectral images dramatically. Similarly, the fusion of spectral–spatial information should also improve the performance of band selection. In this article, two semi-supervised wrapper-based spectral–spatial band selection algorithms are proposed. The local spatial smoothness of hyperspectral imagery is used to improve the performance of band selection when limited labelled samples available. With superpixel segmentation, the first algorithm uses the statistical characteristics of classification map to predict the classification quality of all samples. Based on the Markov random field model, the second algorithm incorporates the spatial information by the minimization of spectral–spatial energy function. Four widely used real hyperspectral data sets are used to demonstrate the effectiveness of the proposed methods, when compared to cross-validation-based wrapper method, the accuracy is improved by 2% for different data sets.  相似文献   

19.
由于传统蚁群算法搜索空间大,算法时间复杂度高等,导致基于传统蚁群算法的高光谱数据波段选择算法(ACA-BS)耗时长,算法效率低下,且易陷入局部最优。而多态蚁群算法能大大缩小算法的搜索空间,降低算法时间复杂度。因此,研究设计了基于多态蚁群算法的高光谱数据波段选择算法(PACA-BS)。从算法运行时间、波段子集的类别可分性及信息量、总体分类精度等方面对算法进行对比分析。用于实验的数据为Hyperion和AVIRIS高光谱影像。实验结果表明:PACA-BS的运行时间较ACA-BS大大减少;对Hyperion影像进行降维时,基于PACA-BS的运行时间约为ACA-BS的一半。两种算法获得的波段子集的类别可分性大小较为接近,但PACA-BS获得的波段子集的信息量和总体分类精度优于ACA-BS。研究表明PACA-BS是一种效率较高的高光谱波段选择算法。  相似文献   

20.
现有的子空间聚类方法大多只适用于单层网络,或者仅对多层网络中每层的聚类结果简单地进行平均,未考虑每层网络中包含信息量不同的特点,致使聚类性能受限。针对该问题,提出一种面向多层网络的稀疏子空间聚类方法。将距离正则项和非负约束条件集成到稀疏子空间聚类框架中,从而在聚类时能够同时利用数据的全局信息和局部信息进行图学习。此外,通过引入稀疏约束使学习到的图具有更清晰的聚类结构,并设计迭代算法进行优化求解。在多个真实数据集上的实验结果表明,该方法能够挖掘网络不同层的互补信息,得到准确的一致性联合稀疏表示,有效提高社团聚类性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号