首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用物理模拟的方法对210 t RH炉的混匀时间、循环流量和去除夹杂物效果进行了研究,并结合实验结果制定了RH炉合理的工艺参数。结果表明,随着提升气量的增大,RH炉的钢液混匀时间缩短,特别是提升气量在100~130 m~3/h范围内,混匀时间减小幅度最大。当提升气体流量达到190 m~3/h后,混匀时间达到最小。RH炉钢液循环流量随提升气量的增加而增大,提升气量大于160 m~3/h后,循环流量开始变化比较平缓。夹杂物去除过程基本上是在前28 min内完成,去除最迅速的阶段是前8 min。  相似文献   

2.
张正群 《特殊钢》2018,39(1):48-50
RH精炼过程加铝前IF钢(/%:≤0.005C,≤0.04Si,0.05~0.20Mn,≤0.015P,≤0.015S,0.03~0.06Als)中的氧含量为340×10-6~467×10-6,用Aspex扫描电镜研究了加铝后210 min钢中夹杂物类型、尺寸和数量,结果表明,IF钢在RH工序加铝脱氧后钢液中夹杂物的类型主要为氧化铝,随着RH循环时间的增加,钢液中夹杂物数量减少;加铝真空循环6 min后可进行合金化,进一步延长循环时间,钢液中夹杂物的去除速度减缓;加铝前IF钢液中的初始氧含量偏高时,可适当延长循环时间至8 min,再进行合金化。  相似文献   

3.
基于相似原理,建立几何相似比1:7水模型研究了145t RH真空精炼装置内钢液循环流动行为,研究了提升气量(60~140 m3/h) 、浸渍管浸渍深度(400~600 mm) 、真空室液面高度(426~526 mm)对钢水循环流量和混匀时间的影响。结果表明,循环流量随提升气量增加而增大且呈近似线性关系,混匀时间随提升气量增加而呈非线性减小;500 mm的浸渍管浸渍深度和526 mm的真空室液面高度下均出现较理想的循环流量;130 m3/h提升气量、600 mm浸渍管浸渍深度和526 mm真空室液面高度可获得最佳循环流动特性。  相似文献   

4.
为研究LF-RH精炼工艺生产Q690钢时不同钙处理时机下夹杂物特征的变化,开展工业试验对RH精炼前后钙处理炉次取样进行定量分析对比。钙处理后夹杂物中CaO质量分数持续增加,CaS质量分数瞬态增加,夹杂物熔点降低。RH精炼前钙处理炉次中,RH精炼过程夹杂物的成分接近低熔点区,结束时夹杂物数量密度和面积分数分别为15个/mm2和0.01%。RH精炼后钙处理炉次中,RH精炼过程夹杂物依旧为高熔点Al2O3-MgO类型,结束时夹杂物数量密度和面积分数分别降至1个/mm2和0.002 5%。RH精炼前钙处理会使RH精炼过程夹杂物熔点以及夹杂物与钢液间的接触角降低,导致夹杂物去除驱动力降低,从而抑制夹杂物的去除。因此LF-RH精炼工艺生产铝脱氧钢时,为提高精炼过程钢中非金属夹杂物的去除效率,应在RH精炼后进行钙处理操作。  相似文献   

5.
朱国森  邓小旋  季晨曦 《钢铁》2022,57(11):99-105
 大尺寸非金属夹杂物是引起超低碳钢冷轧钢板表面线状缺陷的重要原因。以IF钢为例,铸坯中大尺寸夹杂物主要有3类,即结晶器保护渣卷入后被凝固坯壳捕获;连铸过程中钢水二次氧化产生且未上浮去除的;钢液中未充分去除的夹杂物在浸入式水口处粘连、堵塞,后续堵塞物脱落被凝固坯壳捕获。钢液一次脱氧生成的夹杂物中,不低于100 μm的夹杂物在RH处理过程中较容易去除,100 μm以下的夹杂物受钢液的流动影响较大,特别是不超过20 μm的夹杂物由于其上浮时间长、钢液流动的跟随性好,去除难度较大。RH是超低碳钢最重要的精炼设备,也是夹杂物去除的关键环节,研究RH去除20 μm夹杂物的新技术具有重要的意义。研究了RH脱碳结束加铝后真空度对夹杂物去除的影响,创新性提出了低真空度去除不超过20 μm夹杂物的新技术。研究结果表明,与高真空度处理工艺(常规工艺)相比,低真空度(压力5 kPa)处理的钢液中夹杂物数量降低更显著,中间包钢液总氧质量分数平均降低0.000 2%,钢液增氮水平相当。冷轧钢板因炼钢原因导致的线状缺陷降级率比常规工艺降低了29%。夹杂物在钢液中的跟随性理论分析表明,低真空度处理工艺下RH内钢液循环流量和钢液流速减小,降低了RH处理过程中夹杂物随钢液的跟随性,提高了不超过20 μm夹杂物的去除效率,有效改善了水口堵塞程度、提高了轧板表面质量。  相似文献   

6.
针对首秦公司炼钢厂100 t钢包进行了钢包底部软吹氩工艺对钢液中夹杂物去除效果的研究。结果表明,在软吹氩前钢中平均总氧质量分数为16 10-6,钢液中夹杂物尺寸基本在20μm以下的条件下,80~110 L/min的软吹氩气流量、15 min以上的软吹氩气时间可以有效地去除钢液中的非金属夹杂物,钢中夹杂物洁净度指数可保持在0.97以上,而软吹氩气流量大于120 L/min或小于60 L/min时夹杂物洁净度指数都比较低,表明钢液中夹杂物没有得到有效去除。  相似文献   

7.
以汽车外板用高级IF钢为研究对象,首先分析了冶炼全流程中夹杂物的变化,然后重点分析了RH关键操作对钢水洁净度的影响.RH加Ti前钢液中夹杂物是Al2O3,加Ti后钢液中夹杂物是Al-Ti-O复合夹杂,RH冶炼和连铸过程中夹杂物成分基本不变.铝-钛间隔时间试验部分结果显示4 min时钢液洁净度较好.RH纯循环3 min后...  相似文献   

8.
通过对椭圆形浸渍管RH冶炼IF钢加Al脱氧后进行连续取样,研究分析了分别采用椭圆形浸渍管和圆形浸渍管条件下洁净度的变化规律。研究结果表明,相比较圆形浸渍管,采用椭圆形浸渍管RH夹杂物的去除效率相对更快。RH加Al后钢中夹杂物主要以Al_2O_3为主,但不同时刻呈现出不同的形貌。当加Al后循环1 min时,钢中夹杂物主要为团簇状Al_2O_3夹杂,夹杂物尺寸达到百微米;加Al后循环2 min时,钢中夹杂物仍以团簇状Al_2O_3为主,尺寸约为几十微米;加Al后循环6 min时,夹杂物主要以单个Al_2O_3夹杂为主,尺寸细小。随着RH加Al后循环时间的增加,夹杂物数量密度显著降低,在纯循环4 min时夹杂物数量密度已达到最低值。  相似文献   

9.
对RH炉精炼工艺的钢液循环流动、脱碳与脱气的原理及其影响因素进行了分析。在100tRH炉真空精炼工艺下,真空度、提升气体的压力和流量决定了钢液循环流量和混匀时间。介绍了RH炉脱氢率和脱氮率与钢中初始氢含量和氮含量的关系。  相似文献   

10.
浸渍管形状对RH精炼中钢液流动和混合特性的影响   总被引:1,自引:0,他引:1  
贺庆  刘浏  李相臣  薛利强 《钢铁》2013,48(2):23-28
通过水模拟试验,对采用椭圆形和圆形浸渍管的RH设备分别进行了混匀时间和循环流量的测定,比较后得知:在真空压力97709Pa,插深130mm的条件下,当驱动气体流量大于2.33 m3/h时,椭圆浸渍管的RH循环流量优势明显,大于2.7 m3/h时混匀时间明显减少.测出椭圆浸渍管RH设备在不同工艺参数下混匀时间和循环流量的变化规律,并进行了流场流线试验.分析得知,在相同的单位浸渍管截面积供气强度下,椭圆管RH的循环流量和混匀时间均优于普通RH,试验条件下循环流量可增大50%,最后回归出2种模型间循环流量的关系式.  相似文献   

11.
研究了真空度、提升气体量和吹气孔位置对RH钢水混匀时间的影响,模拟了钢包流场情况。试验结果表明:提高RH系统真空度、增加RH提升气体量或增大气体的吹入深度均可减小混匀时间;唐钢RH精炼过程中无死区存在,在相应的混匀时间内可以实现整包钢水成分和温度的均匀;合理控制真空度、提升气体量和浸渍管插入深度有利于稳定出站钢水碳含量,提高Al2O3夹杂物的去除率。  相似文献   

12.
以某厂300tRH真空精炼装置为研究原型,建立1∶6.5的水力模型对RH喷吹精炼工艺进行物理模拟。研究了喷吹位置、喷吹气量及驱动气体流量对循环流量和均混时间的影响。结果表明:不同喷吹气量、驱动气体流量条件下,获得大循环流量和短均混时间的最优喷吹位置不同。较小的喷吹气量(2.98~3.53m3/h)或者较小的驱动气体流量(0.93~1.02m3/h)时,宜采用低顶枪枪位(153.8mm)喷吹;喷吹气量大于3.91m3/h或者驱动气体流量大于1.12m3/h时,宜采用真空槽底部喷吹角度120°的侧喷嘴喷吹。顶枪与侧喷嘴复合喷吹有利于提高RH喷吹工艺的适应性及循环效率。  相似文献   

13.
Based on the similarity principles,a 1∶ 7 scale physical model was established to study the behavior of molten steel flow and inclusion removal in a 145 t Rheinsahl-Heraeus( RH) degasser.On the basis of the quantitative measurements of the circulation flow rate and inclusion removal under various lifting gas flow rates,the effect of circulation flow rate on inclusion removal was investigated in the RH degasser.The inclusion removal rate shows the trend of first increase and then decrease twice with increasing the circulation flow rate when the circulation flow rates are smaller than 104.7 L/min.Whereas,the inclusion removal rate increases again with the further increase in circulation flow rate when the circulation flow rate is larger than 104.7 L/min.At lower circulation flow rates,inclusions are mainly removed by Stokes flotation to the slag/steel interface after inclusions are transferred near the slag/steel interface by the circulation flow.At higher circulation flow rates,the collision and aggregation of inclusions improves the inclusion removal efficiency.With the further increase in the circulation flow rate,inclusions are mainly removed by following the turbulent fluctuation( turbulent diffusion)to the slag/steel interface after inclusions are transferred near the slag/steel interface by the circulation flow.  相似文献   

14.
针对RH工艺生产w(T.O)小于0.0010%的轴承钢,通过现场试验研究了RH纯脱气时间、吹氩量和初始T.O对脱氧和去除夹杂物的影响。试验结果表明:延长RH纯脱气时间可以显著降低钢中T.O和夹杂物的数量;RH提升气体量由60m3/h增大到72m3/h,取得良好的脱氧效果;RH真空处理14min的T.O受初始T.O的影响比真空处理25min的大。  相似文献   

15.
敬业钢铁有限公司现场试验了单嘴浸渍管结构RH炉和弓形浸渍管结构RH炉真空精炼超低碳钢的应用效果,记录两种RH炉提升气体流量和真空度的变化,多次取样检测钢液中w([C])和w([Mn]),分析对比两种RH炉的脱碳效果和混匀时间。结果显示,在真空处理6 min内,两种RH炉的真空度都可降至100 Pa以下,10 min后稳定在50 Pa左右;在真空处理20 min内,前者钢中w([C])基本脱至0.001 0%~0.001 5%,而后者钢中w([C])可以脱至0.000 5%左右,后者的脱碳速率也明显快于前者;前者和后者的混匀时间分别在3和1 min左右。结果表明,后者的冶炼效果明显优于前者,弓形浸渍管比单嘴浸渍管更适用于小吨位RH真空精炼炉。  相似文献   

16.
17.
秦哲  朱梅婷  成国光  张鉴 《特殊钢》2010,31(5):18-21
根据相似理论,以钢厂80 t单嘴精炼炉1:4的水模型模拟了单嘴精炼炉内气泡行为,分析了吹气流量(2~10 L/min)、吹气塞直径(15~30 mm)对气泡行为、混匀时间的影响。水模拟结果表明,随吹气流量增加,混匀时间减少,但吹气流量≥6 L/min,混匀时间没有显著变化;在相同吹气量下,吹气塞直径增加,混匀时间减少。实验研究基础上,在80 t单嘴精炼炉上进行了超低碳钢的生产试验,结果表明单嘴精炼炉在18 min脱碳时间内,钢中碳含量可降到10×10-6;脱硫剂消耗4 kg/t的情况下,成品钢中S含量为(20~30)×10-6,脱硫率平均达49%;吹氩强度平均为4 L/(t·min),是相同吨位RH的25%。  相似文献   

18.
根据相似理论,用1∶9水模型钢包(直径0.43m,水面高度0.45m)模拟RH-PTB真空精炼水冷顶枪喷粉技术,研究顶枪气量、上升管提升气量、顶枪枪位高度对粉剂混均时间的影响。结果表明,随顶枪气量增加,粉剂在液体中均混时间增加,并具有最大值;随提升气量增加,均混时间迅速减少,但当提升气量≥15L/min时,均混时间不再继续减少;顶枪枪位对均混时间有一定影响,实际操作中,应根据具体情况,调整顶枪枪位,以减少粉剂均混时间。  相似文献   

19.
在流场模拟计算的基础上,建立了RH真空精炼过程Al2O3夹杂物运动及去除模型.通过数学模拟计算,分析了RH精炼过程夹杂物运动规律,讨论了夹杂物尺寸、RH吹气量等对夹杂物去除的影响.研究结果表明:同一管径条件下,吹气量为1 400 L/min时,夹杂物的总去除率最高为66.1%且最快去除时间为202 s,是去除夹杂物的最优吹气量;同一吹气量条件下,下降管内径为700 mm时,夹杂物的去除率最高,可达71.31%,夹杂物去除时间最短,为217s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号