共查询到18条相似文献,搜索用时 62 毫秒
1.
随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分.通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱... 相似文献
2.
针对细粒度图像分类任务中难以对图中具有鉴别性对象进行有效学习的问题,本文提出了一种基于注意力机制的弱监督细粒度图像分类算法.该算法能有效定位和识别细粒度图像中语义敏感特征.首先在经典卷积神经网络的基础上通过线性融合特征得到对象整体信息的表达,然后通过视觉注意力机制进一步提取特征中具有鉴别性的细节部分,获得更完善的细粒度特征表达.所提算法实现了线性融合和注意力机制的结合,可看作是多网络分支合作训练共同优化的网络模型,从而让网络模型对整体信息和局部信息都有更好的表达能力.在3个公开可用的细粒度识别数据集上进行了验证,实验结果表明,所提方法有效性均优于基线方法,且达到了目前先进的分类水平. 相似文献
3.
针对细粒度图像类间差距小、类内差距大的问题,文中提出以弱监督学习的方式使用多分支注意力增强卷积网络,从而实现细粒度图像分类.文中采用Inception-V3网络提取图像的基础特征,从中获取多个局部响应区域并进行特征融合,在此基础上采用注意力机制对图像关键区域进行自约束的局部裁剪和局部擦除,避免仅提取目标单个部位的特征,... 相似文献
4.
5.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度... 相似文献
6.
基于深度模型迁移的细粒度图像分类方法 总被引:1,自引:0,他引:1
针对细粒度图像分类方法中存在模型复杂度较高、难以利用较深模型等问题,提出深度模型迁移(DMT)分类方法。首先,在粗粒度图像数据集上进行深度模型预训练;然后,使用细粒度图像数据集对预训练模型logits层进行不确切监督学习,使其特征分布向新数据集特征分布方向迁移;最后,将迁移模型导出,在对应的测试集上进行测试。实验结果表明,在STANFORD DOGS、CUB-200-2011、OXFORD FLOWER-102细粒度图像数据集上,DMT分类方法的分类准确率分别达到72.23%、73.33%和96.27%,验证了深度模型迁移方法在细粒度图像分类领域的有效性。 相似文献
7.
细粒度图像分类是计算机视觉领域一个具有挑战性的任务,在实际场景中具有很高的应用价值。其中不同子类别的物体整体轮廓差异较小,微小的判别性局部区域是分类的关键。然而,这些重要的局部区域的尺度可能不同, 不能用单一的标准去衡量它们。为了解决这个问题,本文提出了多粒度空间混乱模块来帮助神经网络学习如何寻找到不同尺度的判别性细节。该模块首先将图片划分为不同粒度的局部区域,然后随机打乱并重组构成新的输入图片。经过处理的图片具有区域无关性,从而迫使网络更好地在不同粒度层次下寻找有判别力的局部区域并从中学习特征。在3个广泛使用的细粒度图像分类数据集上的实验证明本文提出的模块可以有效地帮助网络寻找判别性局部区域从而提升了准确率并且网络不需要图片的任何部位标注信息。 相似文献
8.
细粒度图像具有类内方差大、类间方差小的特点,致使细粒度图像分类(FGIC)的难度远高于传统的图像分类任务。介绍了FGIC的应用场景、任务难点、算法发展历程和相关的常用数据集,主要概述相关算法:基于局部检测的分类方法通常采用连接、求和及池化等操作,模型训练较为复杂,在实际应用中存在较多局限;基于线性特征的分类方法模仿人类视觉的两个神经通路分别进行识别和定位,分类效果相对较优;基于注意力机制的分类方法模拟人类观察外界事物的机制,先扫描全景,后锁定重点关注区域并形成注意力焦点,分类效果有进一步的提高。最后针对目前研究的不足,展望FGIC下一步的研究方向。 相似文献
9.
基于深度卷积特征的细粒度图像分类研究综述 总被引:1,自引:0,他引:1
细粒度图像分类问题是计算机视觉领域一项极具挑战的研究课题,其目标是对子类进行识别,如区分不同种类的鸟.由于子类别间细微的类间差异和较大的类内差异,传统的分类算法不得不依赖于大量的人工标注信息.近年来,随着深度学习的发展,深度卷积神经网络为细粒度图像分类带来了新的机遇.大量基于深度卷积特征算法的提出,促进了该领域的快速发展.本文首先从该问题的定义以及研究意义出发,介绍了细粒度图像分类算法的发展现状.之后,从强监督与弱监督两个角度对比分析了不同算法之间的差异,并比较了这些算法在常用数据集上的性能表现.最后,我们对这些算法进行了总结,并讨论了该领域未来可能的研究方向及其面临的挑战. 相似文献
10.
针对细粒度图像分类问题提出了一种有效的算法以实现端到端的细粒度图像分类.ECA-Net中ECA(efficient channel attention)模块是一种性能优势显著的通道注意力机制,将其与经典网络ResNet-50进行融合构成新的基础卷积神经网络ResEca;通过物体级图像定位模块与部件级图像生成模块生成物体级图像和部件级图像,并结合原始图像作为网络的输入,构建以ResEca为基础的三支路网络模型Tb-ResEca-Net(three branch of ResEca network).该算法在公有数据集CUB-200-2011、FGVC-aircraft和Stanford cars datasets上进行测试训练,分别取得了89.9%、95.1%和95.3%的准确率.实验结果表明,该算法相较于其他传统的细粒度分类算法具有较高的分类准确率以及较强的鲁棒性,是一种有效的细粒度图像分类方法. 相似文献
11.
图像级标签的弱监督图像语义分割方法是目前比较热门的研究方向,类激活图生成方式是最为常用的解决该类问题的主要工作方法。由于类激活图的稀疏性,导致判别区域的准确性降低。针对上述问题,提出了一种改进的Transformer网络弱监督图像学习方法。首先,引入空间注意力交换层来扩大类激活图的覆盖范围;其次,进一步设计了一个注意力自适应模块,来指导模型增强弱区域的类响应;特别地,在类生成过程中,构建了一个自适应跨域来提高模型分类性能。该方法在Pascal VOC 2012 验证集和测试集上分别达到了73.5%和73.0%。实验结果表明,细化Transformer网络学习方法有助于提高弱监督图像的语义分割性能。 相似文献
12.
提出一种基于密度中心图的弱监督分类方法,利用少量已标注样本,结合大量未知模式样本进行弱监督学习。借助样本空间的密度信息,求出密度中心点来准确地反应数据的空间几何特征,在此基础上建图,利用标记传递方法,使得相似的顶点尽可能赋予相同的类别标记。该方法具备基于图的弱监督算法的良好数学基础,可以发现任意形状的类,对噪音不敏感。并且该方法具有近线性的时间复杂度,更适合处理大规模的数据。将该方法用于UCI机器学习数据集,实验证明,该方法能获得较好的分类效果。 相似文献
13.
14.
15.
对于重建图像存在的边缘失真和纹理细节信息模糊的问题,提出一种基于改进卷积神经网络(CNN)的图像超分辨率重建方法。首先在底层特征提取层以三种插值方法和五种锐化方法进行多种预处理操作,并将只进行一次插值操作的图像和先进行一次插值后进行一次锐化的图像合并排列成三维矩阵;然后在非线性映射层将预处理后构成的三维特征映射作为深层残差网络的多通道输入,以获取更深层次的纹理细节信息;最后在重建层为减少图像重建时间在网络结构中引入亚像素卷积来完成图像重建操作。在多个常用数据集上的实验结果表明,与经典方法相比,所提方法重建图像的纹理细节信息和高频信息能得到更好的恢复,峰值信噪比(PSNR)平均增加0.23 dB,结构相似性(SSIM)平均增加0.0066。在保证图像重建时间的前提下,所提方法更好地保持重建图像的纹理细节并减少图像边缘失真,提升重建图像的性能。 相似文献
16.
目的 计算机辅助技术以及显微病理图像处理技术给病理诊断带来了极大的便利。病理图像分割是常用的技术手段,可用于划分病灶和背景组织。开发高精度的分割算法,需要大量精准标注的数字病理图像,但是标注过程耗时费力,具有精准标注的病理图像稀少。而且,病理图像非常复杂,对病理组织分割算法的鲁棒性和泛化性要求极高。因此,本文提出一种基于图网络的病理图像分割框架。方法 该框架有全监督图网络(full supervised graph network,FSGNet)和弱监督图网络(weakly supervised graph network,WSGNet)两种模式,以适应不同标注量的数据集以及多种应用场景的精度需求。通过图网络学习病理组织的不规则形态,FSGNet能达到较高的分割精度;WSGNet采用超像素级推理,仅需要稀疏点标注就能分割病理组织。结果 本文在两个公开数据集GlaS(Gland Segmentation Challenge Dataset)(测试集分为A部分和B部分)、CRAG(colorectal adenocarcinoma gland)和一个私有数据集LUSC(lung squam... 相似文献
17.
目的 近年来,深度网络成功应用于高光谱图像分类。然而,难以获取充足的标记数据大大限制了深度网络的充分训练,进而导致网络对高光谱图像的分类能力下降。为解决以上困难,提出一种关联子域对齐网络的高光谱图像迁移分类方法。方法 基于深度迁移学习方法,通过对两域分布进行多角度、全面领域适应的同时将两域分类器进行差异适配。一方面,利用关联对齐从整体上对齐了两域的二阶统计量信息,适配了两域的全局分布;另一方面,利用局部最大均值差异对齐了相关子域的一阶统计量信息,适配了两域的局部分布。另外,构造一种分类器适配模块并将其加入所提网络中,通过对两域分类器差异进行适配,进一步增强网络的领域适应效果。结果 从4组真实高光谱数据集上的实验结果可看出:在分别采集于不同区域的高光谱图像数据对上,所提方法的精度比排名第2的分类方法高出1.01%、0.42%、0.73%和0.64%。本文方法的Kappa系数也取得最优结果。结论 与现有主流算法相比较,所提网络能够在整体和局部、一阶和二阶统计量上分别对两域进行有效对齐,进而充分利用在源域上训练好的分类器完成对目标域高光谱数据的跨域分类。 相似文献
18.
针对传统的视网膜图像处理步骤复杂、泛化性差、缺少完整的自动识别系统等问题,提出了一套完整的基于深度神经网络的视网膜图像自动识别系统。首先,对图像进行去噪、归一化、数据扩增等预处理;然后,设计了紧凑的神经网络模型——CompactNet,CompactNet继承了AlexNet的浅层结构参数,深层网络参数则根据训练数据进行自适应调整;最后,针对不同的训练方法和不同的网络结构进行了性能测试。实验结果表明,CompactNet网络的微调方法要优于传统的网络训练方法,其分类指标可以达到0.87,与传统直接训练相比高出0.27;对于LeNet,AlexNet和CompactNet三种网络模型,CompactNet网络模型的分类准确率最高;并且通过实验证实了数据扩增等预处理方法的必要性。 相似文献