共查询到15条相似文献,搜索用时 112 毫秒
1.
2.
针对在超网络上提取局部脑区指标作为特征,忽视了全局的拓扑信息,继而影响网络拓扑的评估,降低分类器性能的问题,提出了一种基于脑功能超网络的多特征融合分类方法,该方法首先在抑郁症数据集上构建超网络,其次将局部脑区特征和子图特征进行融合。最后采用基于多核的SVM分类器进行分类。为了验证所提方法的有效性,选取28例正常被试和38例抑郁症患者进行实验,结果表明,该方法获得了令人满意的分类准确率,平均可达91.60%。获得的异常区域包括左侧舌回、左侧尾状核、左侧丘脑等重要的抑郁症病发区域。故而该基于脑功能超网络的多特征融合分类方法可以有效地用于分类正常人和抑郁症患者。 相似文献
3.
脑功能超网络已成功应用于脑疾病的诊断。在之前的研究中,集中通过改变超边的方法来改善超网络的构建,忽略了不同尺度的节点定义对脑功能超网络拓扑的影响。考虑到该问题,提出了基于不同尺度的脑区划分来进行脑功能超网络的创建,从而分析其对脑功能超网络拓扑和分类性能的影响。具体来说,首先,基于自动解剖标记模板,利用聚类算法和随机动态种子点的方法对大脑进行细分割;其次,基于每种节点规模下所得的平均时间序列,利用LASSO方法分别进行脑功能超网络的构建;接着分别提取功能超网络的多组局部特征(节点度、最短路径长度、聚类系数),并利用非参数检验和基于相关的方法选取每种节点规模下的差异特征;最后,分别利用支持向量机构建分类模型。分类结果显示,随着节点规模的增大,所构建的脑功能超网络分类准确率增高,在节点尺度1 501下,准确率高达95.45%。同时,多尺度融合的分类准确率优于任一尺度下的分类准确率,这表明不同尺度的节点定义会影响脑功能超网络的拓扑,在未来的脑功能超网络研究中,除了关注超边的构建方法外,应更加关注大脑划分方案的选择,而且多种基于大脑划分的尺度融合特征可以补充更多的分类信息,提高抑郁症与正常人的分... 相似文献
4.
目的 传统的静息态功能性磁共振成像(fMRI)的功能脑网络(FBN)研究是基于在整个扫描过程中FBN固定不变的假设。但是,最近的研究表明FBN是动态变化的,而且其中蕴含着丰富的信息。本文提出一种多任务融合最小绝对值收缩和选择算子(Lasso)方法来构建静息态fMRI的动态FBN。 方法 提出的多任务融合Lasso方法可以在构建动态FBN时,保留网络的稀疏性及子序列的时间平滑性。具体来说,首先用滑动窗方法得到交叠的静息态fMRI子序列;然后用多任务融合Lasso方法联合地估计一个样本的所有子序列的功能连接从而构建动态FBN,用k均值聚类算法得到每类样本子序列的功能连接的聚类中心,并将所有类的聚类中心组成回归矩阵;最后根据回归矩阵求样本的回归系数,将其作为特征进行分类,验证多任务融合Lasso方法对动态FBN建模的有效性。 结果 采用公开的fMRI数据集来验证多任务融合Lasso模型构建动态FBN的分类效果。实验使用阿尔兹海默症神经影像学计划(ADNI)公开的fMRI数据集中的阿尔兹海默症患者、早期轻度认知功能障碍患者和健康被试3组数据,并用准确率、灵敏度和特异度来评估算法的分类性能。在3组二分类实验中,本文方法分别达到了92.31%、80.00%和84.00%的准确率。实验结果表明,与静态FBN模型和其他传统的动态FBN模型相比,本文方法能取得更好的分类效果。结论 本文提出的多任务融合Lasso构建动态FBN的方法,能有效地保留网络的稀疏性和子序列的时间平滑性,同时提高算法的分类效果,在一定程度上为脑部疾病的诊断提供帮助。多任务融合Lasso模型可以用于动态FBN的构建,挖掘功能连接的动态信息,同时整个算法可以用于基于fMRI数据的脑部疾病的分类研究中。 相似文献
5.
脑功能超网络的研究对脑疾病的准确诊断具有重要作用,目前已经有多种超网络的构建方法被应用于脑疾病的分类研究,但这些方法均未考虑到组间的重叠性问题.研究证明,组间的重叠性可能会对相关超网络模型的构建及构建后的分类应用产生影响,因此若仅使用非重叠组结构会限制其在超网络中的适用性.针对已应用于脑疾病分类研究的超网络构建方法在构... 相似文献
6.
脑网络分析已广泛应用于神经影像领域的研究。超网络构建方法被提出用于描述多个脑区之间的高阶关系。超网络是根据静息态功能磁共振成像时间序列通过稀疏线性回归方法构建。在已有文献中,用于构建超网络的稀疏线性回归模型是采用lasso方法解决。然而这种方法存在局限,在超边构建时不能够有效的解决脑区之间的组效应。针对这一问题,本文提出将elastic net方法引入到超网络构建中,并且应用于抑郁症患者与正常被试的分类。实验结果显示基于lasso与基于elastic net的方法分别可以达到83.33%与86.36%的分类准确率。分类结果表明与原有方法相比,基于elastic net的方法可以得到更为有效的特征以及更好的分类效果。 相似文献
7.
脑网络作为复杂网络分析方法在神经影像领域的应用已得到广泛的认可。研究发现脑网络中的节点规模对网络的拓扑属性会产生重要的影响。利用静息态功能影像数据,在5种不同的节点规模下分别完成抑郁症患者和正常对照的脑网络构建,比较了网络拓扑属性的变化,并选择了4种不同的分类算法进行脑疾病分类研究。结果表明,网络节点数量不仅对拓扑属性产生了影响,而且对分类模型的构建也有直接作用。支持向量机(RBF核函数)模型在节点规模为250时,分类效果最好,平均正确率为83.18%。该研究结果在抑郁症的临床诊断中具有重要的应用价值,为基于脑网络的机器学习分类研究在网络节点规模的选择上提供了重要的参考依据。 相似文献
8.
针对LASSO方法构建脑功能超网络模型缺乏组效应解释能力和网络有偏性问题,提出了两种基于组变量选择的近似无偏稀疏脑功能超网络模型来改善超网络的构建,分别为组最小最大凹惩罚方法和组平滑剪裁的绝对值偏差方法,并将其分别应用于抑郁症的分类研究中。分类结果显示,两种方法的分类表现均优于传统超网络模型,且组最小最大凹惩罚方法的分类准确率最高,达到86.36%。结果表明若想构建有效的脑功能超网络模型,不仅需要考虑脑区间组效应的解释能力,还需考虑模型变量选择的有偏性问题。而且在考虑到超网络有偏性的基础上,选取较为宽松的惩罚方式来选取目标变量,则可更精确地表征人脑的复杂高阶多元交互信息。 相似文献
9.
10.
基于单一脑图谱模板的功能连接网络中提取的特征表示不足以揭示患者组和正常对照组(NC)之间的复杂拓扑结构差异,而传统的基于多模板的功能脑网络定义多采用独立模板,缺乏模板间的关联,从而忽略了各模板构建的功能脑网络中潜在的拓扑关联信息。针对上述问题,提出了一种多层次脑图谱模板和一种使用关系诱导稀疏(RIS)特征选择模型的方法。首先定义了具有关联的多层次脑图谱模板,挖掘模板之间潜在关系和表征组间网络结构差异;然后用RIS特征选择模型进行参数优化,进而提取组间差异特征;最后利用支持向量机(SVM)方法构建分类模型,并应用于抑郁症患者的诊断。在山西大学第一医院抑郁症临床诊断数据库上的实验结果显示,基于多层次模板的功能脑网络通过使用具有RIS特征的选择方法取得了91.7%的分类准确率,相比传统多模板方法的准确率提高了3个百分点。 相似文献
11.
The least absolute shrinkage and selection operator (LASSO) has been playing an important role in variable selection and dimensionality reduction for linear regression. In this paper we focus on two general LASSO models: Sparse Group LASSO and Fused LASSO, and apply the linearized alternating direction method of multipliers (LADMM for short) to solve them. The LADMM approach is shown to be a very simple and efficient approach to numerically solve these general LASSO models. We compare it with some benchmark approaches on both synthetic and real datasets. 相似文献
12.
针对当前大多数软件缺陷预测模型预测准确率较差的问题, 提出了结合最小绝对值压缩和选择方法与支持向量机算法的软件缺陷预测模型。首先利用最小绝对值压缩与选择方法的特征选择能力降低了原始数据集的维度, 去除了与软件缺陷预测不相关的数据集; 然后利用交叉验证算法的参数寻优能力找到支持向量机的最优相关参数; 最后运用支持向量机的非线性运算能力完成了软件缺陷预测。仿真实验结果表明, 所提出的缺陷预测模型与传统的缺陷预测模型相比具有较高的预测准确率, 且预测速度更快。 相似文献
13.
This paper investigates a novel induced ordered weighted averaging (IOWA) distance operator and its application in Pythagorean fuzzy (PF) multiattribute group decision making (MAGDM). First, a new induced aggregated distance operator named the weighted IOWA distance (WIOWAD) operator is developed, which differs from the existing methods in that it considers the dual roles of the order-inducing variables at the same time. In other words, in addition to inducing the order of the arguments, the order-inducing variables of the WIOWAD operator also plays an important role in moderating the associated weight vector. Some useful properties and different families of the WIOWAD are also discussed. Then, an extension of the WIOWAD within the PF situation is presented, thus obtaining the PFWIOWAD operator. Furthermore, a MAGDM method based on the PFWIOWAD is introduced. Finally, the practicality and effectiveness of proposed approach are illustrated in a research and development project selection problem. 相似文献
14.
The conventional diagnostic process and tools of cardiovascular autonomic neuropathy (CAN) can easily identify the two main categories of the condition: severe/definite CAN and normal/healthy without CAN. Conventional techniques encounter significant challenges when identifying CAN in its early or atypical stages due to the inherent imbalanced and incompleteness condition in the collected clinical multimodal data, including electrocardiogram (ECG) data from ECG sensors, blood chemistry, podiatry, and endocrinology features. Therefore, most detection tools and techniques are limited to binary CAN classification. However, early diagnosis of CAN or diagnosis of the atypical stages of CAN is more important than the diagnosis of severe CAN, which, in fact, is easily identifiable with a few diagnostic reports. In this paper, we propose a novel multi-class classification approach for timely CAN detection. The proposed classification algorithm develops a multistage fusion model by combining feature selection and multimodal feature fusion techniques. The proposed method develops a performance criterion-based feature selection technique to guarantee highly significant features. A multimodal feature fusion technique was developed using deep learning feature fusion and selected original features. The experimental results obtained from testing with a large CAN dataset indicate that the proposed algorithm significantly improved the diagnostic accuracy of CAN compared to conventional Ewing battery features. The algorithm also identified the early or atypical stages of CAN with an AUC score of 0.931 using leave-one-out cross-validation. 相似文献
15.
已有很多机器学习算法能够很好地应对预测分类问题,但这些方法在用于小样本、大特征空间的医疗数据集时存在着预测准确率和F1值不高的问题。为改善肝移植并发症预测的准确率和F1值,提出一种基于迁移成分分析(TCA)和支持向量机(SVM)的肝移植并发症预测分类方法。该方法采用TCA进行特征空间的映射和降维,将源领域和目标领域映射到同一再生核希尔伯特空间,从而实现边缘分布自适应;迁移完成之后在源领域上训练SVM,训练完成后在目标领域上实现并发症的预测分析。在肝移植并发症预测实验中,针对并发症Ⅰ、并发症Ⅱ、并发症Ⅲa、并发症Ⅲb、并发症Ⅳ进行预测,与传统机器学习和渐进式对齐异构域适应(HDA)相比,所提方法的准确率提升了7.8%~42.8%,F1值达到85.0%~99.0%,而传统机器学习和HDA由于正负样本不均衡出现了精确率很高而召回率很低的情况。实验结果表明TCA结合SVM能够有效提高肝移植并发症预测的准确率和F1值。 相似文献