共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
通过拉伸试验获得了两种双相钢(即0.16%C、1.2%Mn的铁素体/贝氏体和铁素体-马氏体钢)的应力-应变曲线。这两种钢均以不同的条件实施临界退火,其中铁素体/贝氏体铜退火后进行盐淬,而铁素体/马氏体钢进行水淬。用Hollomon公式检查了试样的应力-应变数据。试验结果显示两种双相钢的加工硬化过程均分为二个阶段,每个阶段有不同的加工硬化指数。还研究了硬相(贝氏体和马氏体)的体积分数对极限抗拉强度、总延伸量和加工硬化指数的影响。结果表明,当硬相的体积分数增加时,UTS随之增加,而加工硬化指数和总延伸量则随之减小。 相似文献
4.
5.
6.
《钢铁研究学报》2020,(2)
基于过冷奥氏体动态相变的思想,通过两道次压缩变形结合控制冷却的热模拟轧制工艺,获得不同贝氏体含量及形态的细晶铁素体贝氏体双相钢。通过显微组织观察及力学性能测试,考察了第二相贝氏体特征对双相钢室温拉伸变形行为的影响。研究结果表明,形变后快速冷却可获得无碳板条状贝氏体,较慢的冷速或在贝氏体转变区保温处理可获得粒状贝氏体。贝氏体体积分数大于20%左右的细晶铁素体/贝氏体双相钢具有低的屈服强度,高的抗拉强度,高的伸长率,低屈强比以及连续屈服特性。屈服强度既与铁素体晶粒尺寸相关,也与贝氏体形态和数量相关。板条贝氏体引起的屈服强度提高大于粒状贝氏体,粒状贝氏体具有比板条贝氏体更好的塑性。 相似文献
7.
通过实验室热轧机组的控轧控冷试验,研究了控轧控冷参数对超高强铁素体/贝氏体双相钢组织性能的影响。结果表明,采用不同温度终轧,轧后不同方式冷却,抗拉强度几乎都在1 000MPa以上,屈强比在0.54~0.62之间,伸长率在13%~17%之间。铁素体晶粒随终轧温度降低和冷却速度加快而细化;终冷温度降低,贝氏体量增多。经800℃终轧后层流冷却至560℃左右空冷,由于铁素体晶粒细化,组织中大量的粒状贝氏体、无碳化物贝氏体、少量的孪晶马氏体以及残余奥氏体的存在使抗拉强度达1 130MPa,伸长率达16%,强塑积达到18 080MPa.%的最高值。控轧控冷获得以铁素体/贝氏体双相组织为主并含有少量残余奥氏体+马氏体的复相组织,使试验钢具有了优异的力学性能。 相似文献
8.
9.
Ming-hui CAI 《冶金译丛》2014,(2):58-63
系统的研究了si对铁素体-贝氏体双相(FBDP)钢显微组织变化、拉伸性能、冲击韧性和拉伸凸缘性的影响,从0到0.95%加人si可促进细的铁素体等轴晶的形成,高Si(0.95%)时也可导致块状马氏体岛和残余奥氏体的形成。随si含量的增加屈服强度、抗拉强度和延伸率提高,因此,由于加入si提高了应变硬化速率,改善了抗拉强度和韧性之间的平衡。孔扩张后的裂纹形貌表明FBDP钢有极好的拉伸凸缘性,这与显微裂纹在铁素体相内扩展以及铁素体晶粒沿与裂纹垂直方向延伸有关。含0.95%Si钢与含0.55%Si钢相似都有高强度与高冲击韧性组合,特别是含0.95%Si钢表现出极好的抗拉强度与拉伸凸缘性组合。 相似文献
11.
12.
摘要:为了研究大变形管线钢应变硬化行为及其表征参数之间关联性,采用TMCP工艺调控制备了9种不同贝氏体体积分数的铁素体/贝氏体(F/B)多相组织钢。通过力学性能及应变硬化行为分析,对应变硬化指数、应力比、屈强比和伸长率等大变形管线钢应变硬化能力表征参数之间的关联性及其机制、内涵和适用范围进行了研究。结果表明,F/B多相钢中,应力比Rt20/Rt10和均匀伸长率与应变硬化指数呈线性正比关系,屈强比与应变硬化指数呈非线性反比关系,应力比Rt50/Rt10在一定条件下与应变硬化指数存在线性关系,应力比Rt15/Rt05、总伸长率、应变硬化指数之间不具备明显的关系。通过应变硬化行为分析合理阐释了以上参数之间的关联机制,并阐释了其内涵和适用范围。硬化指数、均匀伸长率和应力比Rt20/Rt10应作为描述F/B多相钢塑性形变阶段应变硬化能力的主要参数,屈强比和应力比Rt50/Rt10则应作为次要参数。采用工业化生产数据对上述结论进行了验证,与所得结论吻合良好。 相似文献
13.
双相钢具有优异的力学性能,而马氏体/铁素体的含量对其性能具有重要影响。通过实验调节淬火温度制备了不同马氏体体积分数的双相钢,采用金相显微镜对马氏体/铁素体组织形貌及分布进行了定性观察;其次利用电子背散射衍射技术(EBSD)并结合高斯拟合,发现马氏体/铁素体衍射花样衬度呈双峰分布,据此对钢中马氏体体积分数进行了定量统计。结果表明:淬火温度为730℃时,马氏体体积分数仅为19.09%。随淬火温度增加,双相钢中马氏体含量提高;于790℃淬火时,马氏体体积分数达到30.96%,提高了62%。此外,对试验双相钢力学性能进行对比分析发现:随淬火温度升高,双相钢的抗拉强度明显提高,屈服强度也呈上升趋势,这主要与马氏体含量增加有关;而双相钢延伸率显著降低,这主要是由于铁素体含量减少,且形貌由利于变形的针状转变为多边形所致。 相似文献
14.
摘要:研究采用电子背散射衍射技术(EBSD)对温轧及退火态Fe-13Cr-4.5Al-2.2Mo-1.1Nb(质量分数,%)钢的织构、晶界类型和Laves相进行了表征,并讨论了对力学性能的影响。结果表明,300℃温轧变形,70% 的样品出现显著的变形不均匀组织,利用Taylor因子解释了不均匀变形特征,晶粒取向以变形织构α、γ和<100>//ND为主,比例分别为43.3%、39.0%和17.1%,屈服强度和抗拉强度为1298.1MPa和1371.6MPa,伸长率4%。750~800℃退火30~60min后,再结晶晶粒尺寸小于10μm,γ织构比例减少至11.9%~15.5%,此时屈服强度为790~860MPa,抗拉强度为840~890MPa,伸长率为20%左右。1000℃退火5min后再结晶晶粒明显长大,γ织构增加至39.1%,此时屈服强度、抗拉强度和伸长率分别为567.7MPa、800.7MPa和25.6%。1000℃时随退火时间增加,γ织构增加至50%以上,Laves相的钉扎是γ织构增加的原因。600℃温轧的微观组织和300℃温轧的类似,但屈服强度和抗拉强度略有下降,伸长率增加。 相似文献
15.
摘要:矿山机械用耐磨钢构件服役环境恶劣而常常出现磨损失效,研究适用于复杂工况下的高耐磨钢成分、工艺与组织性能的关系,有利于提高耐磨构件的服役寿命并降低经济损失。利用SEM、TEM、洛氏硬度计、万能拉伸试验机及冲击试验机等,研究了160~400℃不同回火温度下Cu-Cr-Ti马氏体耐磨钢的组织形貌、强度硬度及-20℃冲击韧性的变化。结果表明,试验钢淬火态组织主要为板条马氏体,当回火温度为160℃时,马氏体板条依然清晰,但随回火温度升高到400℃,马氏体板条界渐渐消失,基体中出现大量片状或粒状渗碳体。EDS分析发现样品钢基体中含有纳米级Ti、Nb的碳氮化物。随回火温度升高,基体组织演变导致强化机制发生变化,回火温度为300℃,综合力学性能最佳,其抗拉强度为1500MPa,屈服强度1100MPa,伸长率为15.5%。随回火温度升高,-20℃冲击韧性由60J/cm2逐渐降低到36.3J/cm2。 相似文献
16.
17.
一般认为低温相变提高贝氏体相变量,而高温奥氏体预变形抑制贝氏体相变。通过热模拟实验膨胀曲线、扫描电镜微观组织和X射线衍射图谱等,研究了高温奥氏体预变形和过冷度对贝氏体相变和组织的综合影响。结果表明,高温变形对贝氏体相变的阻碍程度取决于相变温度,随着相变温度的升高,对贝氏体相变的阻碍作用逐渐减小。此外,无变形试样中,相变温度最低(300℃)时的贝氏体相变初始速率最大,而对于变形试样,相变温度最高(450℃)时贝氏体相变初始速率最大。同时,在同一相变温度下,由于高温变形导致过冷奥氏体的机械稳定化,变形试样中的马氏体/奥氏体组织比无变形试样粗大,且变形试样中残余奥氏体含量增加。 相似文献
18.
奥氏体不锈钢较低的屈服强度限制了它在结构件中的使用。采用形变和相逆转变方法分别制备出了高屈服强度的奥氏体不锈钢。利用X射线衍射仪、光学显微镜、扫描电子显微镜、透射电子显微镜、电子背散射衍射技术和万能试验机分别对奥氏体钢进行组织表征和力学性能测试,结果表明粗大的奥氏体晶粒在形变过程中形成位错、剪切带、应变诱导马氏体等组织,相逆转变方法获得了超细的无缺陷等轴奥氏体晶粒。形变强化和细晶强化均能明显提高奥氏体不锈钢屈服强度(280 MPa提升至550 MPa)的同时保持较好的塑性(伸长率46%和55%)。 相似文献
19.
摘要:对粗晶201LN奥氏体不锈钢采用60%冷变形结合700℃退火120s工艺制备超细晶奥氏体不锈钢,研究晶粒细化对奥氏体不锈钢高温力学性能的影响。利用光学显微镜、扫描电子显微镜、透射电子显微镜、电子背散射衍射技术对粗晶和超细晶奥氏体钢进行了组织表征,并使用万能试验机测试20和650℃环境下力学性能。结果显示粗晶奥氏体不锈钢经过冷变形结合退火工艺处理,平均晶粒尺寸由18μm细化为0.9μm,屈服强度由383MPa提高到704MPa,而伸长率由63.8%下降到46.3%,表明晶粒细化能有效提高奥氏体不锈钢屈服强度的同时较小损害塑性,TEM证实其形变机制均为形变诱导马氏体和孪生协同作用。当温度由20℃提高到650℃时,粗晶奥氏体不锈钢屈服强度和伸长率分别下降到180MPa和28.1%,超细晶奥氏体不锈钢屈服强度和伸长率分别为384MPa和24.2%。这表明在650℃高温环境下细晶强化作用仍然有效,粗晶和超细晶奥氏体不锈钢也有较好的塑性,其形变机制分别变为位错滑移和位错滑移+层错+孪生。 相似文献
20.
对一种含硼的低碳贝氏体钢进行了不同工艺的回火处理,并通过室温拉伸、摆锤冲击实验和扫描电镜研究了回火处理对实验钢的晶粒尺寸、晶界比例、贝氏体板条块的演变及强韧性的影响。结果表明,回火处理可使实验钢屈服强度升高,低温韧性显著改善,高温回火后塑性提高。300T实验钢-20℃下断口为韧窝断裂和准解理组成的混合型断裂,而500T和650T实验钢断口为韧窝断裂,600℃出现回火脆性区间,韧性恶化,属混合型断裂。650T钢的低温韧性最优,较高的回火温度促进了小角度晶界的迁移、亚晶合并过程,亚板条块数量减少,大角度晶界的比例、数量提高,晶粒尺寸有效细化,同时单位面积内板条块数目显著增加,有效地钝化了裂纹,提高了低温韧性。 相似文献