共查询到16条相似文献,搜索用时 73 毫秒
1.
目的 为了提高运动模糊图像盲复原清晰度,提出一种混合特性正则化约束的运动模糊盲复原算法。方法 首先利用基于局部加权全变差的结构提取算法提取显著边缘,降低了噪声对边缘提取的影响。然后改进模糊核模型的平滑与保真正则项,在保证精确估计的同时,增强了模糊核的抗噪性能。最后改进梯度拟合策略,并加入保边正则项,使图像梯度更加符合重尾分布特性,且保证了边缘细节。结果 本文通过两组实验验证改进模型与所提算法的优越性。实验1以模拟运动模糊图像作为实验对象,通过对比分析5种组合步骤算法的复原效果,验证了本文改进模糊核模型与改进复原图像模型的鲁棒性较强。实验结果表明,本文改进模型复原图像的边缘细节更加清晰自然,评价指标明显提升。实验2以小型无人机真实运动模糊图像为实验对象,通过与传统算法进行对比,对比分析了所提算法的鲁棒性与实用性。实验结果表明,本文算法复原图像的标准差提升约11.4%,平均梯度提升约30.1%,信息熵提升约2.2%,且具有较好的主观视觉效果。结论 针对运动模糊图像盲复原,通过理论分析和实验验证,说明了本文改进模型的优越性,所提算法的复原效果较好。 相似文献
2.
针对运动模糊图像的盲复原,提出一种基于混合高阶全变差正则化的盲复原方法。该方法首先采用shock滤波器从模糊图像中预测出清晰的图像边缘,并用多尺度策略实现对模糊核由粗到细的准确估计。然后根据自然图像边缘的稀疏特性,将全变差模型的保护边缘特性结合高阶全变差克服平滑区域阶梯效应的优势,对图像进行正则化约束,提出新的混合高阶全变差正则化模型。最后,利用分裂布雷格曼迭代策略对提出模型进行最优化求解。实验结果表明,提出的方法能够很好地保护图像边缘细节,同时有效地抑制平滑区域内振铃和阶梯效应的产生,获得高质量的复原图像。与近几年图像盲复原算法相比,不仅改进了复原图像的主观视觉效果,而且客观上提高了峰值信噪比。 相似文献
3.
稀疏平滑特性的多正则化约束图像盲复原方法 总被引:1,自引:0,他引:1
为了实现对线性空间不变的模糊图像的盲复原,提出了一种基于稀疏性和平滑特性的多正则化约束的模糊图像盲复原方法.首先,根据自然图像边缘的稀疏特性,运用了一种权重的全变差范数(weighted total variation norm,简称WTV-norm)对复原图像进行正则化约束;然后,从运动模糊的点扩散函数(motion point spread function,简称MPSF)的特性出发,提出一种能够适用于多种模糊情况的多正则化约束;最后,提出了一种改进的变量分裂(modified variable splitting,简称MVS)方法来得到清晰的复原图像,同时准确地估计出相应的模糊退化函数.大量的实验结果表明,该方法能够较好地复原多种不同类型的模糊(例如运动模糊、高斯模糊、均匀模糊、圆盘模糊).与近几年提出来的一些具有代表性的模糊图像盲复原方法相比,该方法不仅主观的视觉效果得到了较为明显的改进,而且客观的信噪比增量也增加了1.20dB~4.22dB. 相似文献
4.
5.
图像在获取、传输及保存的过程中,很多因素会导致图像质量退化,图像模糊是图像质量退化的一种常见表现。基于全变差(TV)的图像复原Chan模型虽然能较好地刻画导致图像质量退化的模糊核,但该模型的图像复原结果严重依赖于参数的选取。针对Chan模型对参数敏感的问题,在该模型中引入模糊核的Tikhonov正则,提出新的盲去糊模型,并证明新的盲复原模型解的存在性。另外,采用由粗到精的多层图像金字塔策略,构造模糊核的初始值,再结合交替极小化(alternating minimization, AM)方法,设计基于初始模糊核的快速算法求解所提模型。数值实验结果表明:所提模型与其他正则化模型相比,在不需要模糊核动态阈值约束的前提下,不仅能得到高质量的图像复原结果,而且对参数有较好的鲁棒性。 相似文献
6.
7.
图象盲复原所面临的主要问题是可利用信息的不足,所以必须充分利用图象本身及成像系统的先验信息,为此,结合模糊先验辨识的思想,给出了一种新的空间自适应正则化算法,该算法先用交替最小化的迭代方法对模糊进行先验辨识,然后利用辨识结果,用各向异性扩散进行图象复原,算法充分利用了图象及成像系统(或点扩散函数PSF)的分段平滑特性,同时又利用各向异性扩散的概念,使得正则化不仅在程度上,而且在方向上都是空间自适应的,从而能够有效地进行图象盲复原,仿真结果表明,该算法的复原效果优于空间自适应各向同性正则化(SAR)算法,其收敛性能优于空间自适应各向异性正则化(SAAR)算法。 相似文献
8.
针对低分辨率图像盲复原中信息不足的问题,可以用正则方法来求解。假设点扩散函数结构已知而参数未知,模糊矩阵可表示为带参数的形式,在Nguyen等人的正则有参盲复原框架的基础上,进一步根据Roberts交叉梯度算子构造正则项,从自适应的角度构造正则化参数,并用迭代法求解该框架的目标泛函极小值。算法分析和实验结果表明,这种方法能取得令人满意的超分辨图像复原效果。 相似文献
9.
拍摄过程中的相对运动,导致获取图像存在一定程度的模糊,降低了其利用价值。在贝叶斯框架下,基于图像的局部结构特征和方向信息测度,提出了改进的自适应非凸全变分正则化图像复原模型,充分利用图像的全局和局部先验信息,有效抑制了复原图像中存在的振铃效应。实验结果表明,提出的改进模型在复原图像的同时能够保留图像的边缘轮廓等结构信息,得到的复原图像在峰值信噪比、平均结构相似度和主观视觉效果方面均有所提高。 相似文献
10.
运动模糊图像盲复原是图像处理中的关键问题之一.由于模糊信息估计的复杂性以及图像噪声的影响,现有算法往往难以做到高质量的图像复原.为改善模糊信息估计的效果,提出一种基于自适应线性滤波的改进算法.首先在原有模糊信息估计过程中引入自适应动态线性滤波以抑制噪声影响,达到改善模糊信息估计结果的目的,同时可以起到调整优化目标的作用,使原问题变得较容易求解,从而获得高质量的模糊信息估计;在此基础上提出了改进的重定权值split Bregman迭代法,用于获得模糊信息后求解原始图像的过程中,进一步改善模糊图像复原的效果.实验结果表明,与3种现有的模糊图像盲复原算法相比,该算法能更准确地估计模糊信息,对多数图像复原任务具有更好的鲁棒性,能有效地用于运动模糊图像复原任务. 相似文献
11.
针对于核磁共振(MR)图像重构中由于欠采样导致的重构图像不够完整、边缘模糊以及噪声残留等问题,提出了一种基于L2正则的非凸全变差正则重构模型。首先,以Moreau包络和最小最大凹罚函数为工具构造L2范数的非凸正则;然后,将其应用于全变差正则上来构造各向同性的非凸全变差正则稀疏重构模型。所提的非凸正则可以有效地避免凸正则中对较大非零元欠估计现象,能够更有效地重构目标的边缘轮廓;同时,在一定条件下可以保证目标函数的整体凸性,从而最后可以利用交替方向乘子法(ADMM)对模型进行求解。仿真实验对若干MR图像在不同的采样模板和采样率下进行了重构。实验结果均表明,与几种典型的图像重构方法相比,所提模型性能更优,相对误差明显降低,峰值信噪比(PSNR)有明显改善,较经典的L1非凸正则重构模型提升了大约4 dB,并且重构后的图像视觉效果显著提升,有效地保留了原始图像的边缘细节。 相似文献
12.
交替方向乘子法(ADMM)在机器学习问题中已有一些实际应用。针对大规模数据的处理和非光滑损失凸优化问题,将镜面下降方法引入原ADMM批处理算法,得到了一种新的改进算法,并在此基础上提出了一种求解非光滑损失凸优化问题的坐标优化算法。该算法具有操作简单、计算高效的特点。通过详尽的理论分析,证明了新算法的收敛性,在一般凸条件下其具有目前最优的收敛速度。最后与相关算法进行了对比,实验结果表明该算法在保证解稀疏性的同时拥有更快的收敛速度。 相似文献
13.
目的 高光谱图像距具有较高的光谱分辨率,从而具备区分诊断性光谱特征地物的能力,但高光谱数据经常会受到如环境、设备等各种因素的干扰,导致数据污染,严重影响高光谱数据在应用中的精度和可信度。方法 根据高光谱图像光谱维度特征值大小与所包含信息的关系,利用截断核范数最小化方法表示光谱低秩先验,从而有效抑制稀疏噪声;再利用高光谱图像的空间稀疏先验建立正则化模型,达到去除高密度噪声的目的;最终,结合上述两种模型的优势,构建截断核范数全变差正则化模型去除高斯噪声、稀疏噪声及其他混合噪声等。结果 将本文与其他三种近期发表的主流去噪方法进行对比,模型平均峰信噪比提高3.20 dB,平均结构相似数值指标提高0.22,并可以应用到包含各种噪声、不同尺寸的图像,其模型平均峰信噪比提高1.33 dB。结论 本文方法在光谱低秩中更加准确地表示了观测数据的先验特征,利用高光谱遥感数据的空间和低秩先验信息,能够对含有高密度噪声以及稀疏异常值的图像进行复原。 相似文献
14.
正则化图像复原最终会导致一个大规模优化问题,提出了一种基于Bregman迭代双正则化的图像复原方法。该方法中目标函数同时考虑总变分正则化和小波域稀疏正则化,在Bregman框架下解决图像复原问题,并且给出了用于解该问题的分裂Bregman迭代算法。该算法将复杂的优化问题转化为几十次简单的迭代加以解决,每次迭代只需几次快速傅里叶变换和收缩操作即可。实验结果表明,提出的复原算法不论从客观改善信噪比还是主观视觉,都能取得很好的效果。同时与目前的复原算法相比,该算法有更快的收敛速度。 相似文献
15.
目的 由于高光谱遥感数据携带丰富的光谱和空间信息,使其在许多领域得以广泛关注和应用。但是高光谱遥感数据在获取过程中受到各种因素的影响,存在多种不同程度的退化,进而影响到后续的处理和应用。因此,提出一种基于低秩矩阵近似和混合全变差正则化方法来复原退化的高光谱遥感数据。方法 首先分析高光谱遥感数据的两种低秩先验:光谱低秩先验和空间低秩先验;然后利用光谱低秩先验建立低秩矩阵近似表示模型,有效抑制稀疏噪声,例如脉冲噪声、条纹噪声、死线噪声等;再利用空间低秩先验建立混合全变差正则化模型,有效去除高密度噪声,例如强高斯噪声、泊松噪声等;最后结合两种模型的优势,建立基于低秩矩阵近似和混合全变差正则化模型。结果 利用多组高光谱遥感数据,和多种相关的高光谱复原方法进行对比仿真实验,表明新模型的结果在视觉质量有很大改进。与目前最新的复原模型相比,提出的模型的平均峰值信噪比能提高1.8 dB,而平均结构相似数值指标能提高0.05。结论 新模型充分利用高光谱遥感数据的空间和光谱低秩先验,针对含有高密度噪声和稀疏异常值的高光谱遥感数据,能够有效复原出高质量的高光谱遥感数据。 相似文献
16.
In this paper, the automated spatially dependent regularization parameter selection framework for multi-scale image restoration is applied to total generalized variation (TGV) of order 2. Well-posedness of the underlying continuous models is discussed and an algorithm for the numerical solution is developed. Experiments confirm that due to the spatially adapted regularization parameter, the method allows for a faithful and simultaneous recovery of fine structures and smooth regions in images. Moreover, because of the TGV regularization term, the adverse staircasing effect, which is a well-known drawback of the total variation regularization, is avoided. 相似文献