首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice homozygous for a disruption in the Mdr2 gene (Mdr2 (-/-) mice) lack the Mdr2 P-glycoprotein (P-gp) in the canalicular membrane of the hepatocyte and are unable to excrete phosphatidylcholine into the bile. These mice develop a nonsuppurative cholestatic liver disease, presumably caused by the high concentrations of free cytotoxic bile acids in bile. We generated transgenic mice that express the human homolog of Mdr2, MDR3, specifically in the liver by the use of an albumin promoter. In these mice the MDR3 P-gp is exclusively located in the canalicular membrane of hepatocytes and phospholipid excretion into bile is restored. Mice that contain the same amount of MDR3 P-gp as that of Mdr2 P-gp in wild-type mice, also excrete the same amount of phospholipids. No histopathological abnormalities were observed in the livers of these mice. In mice that express MDR3 at a higher or lower level, the phospholipid excretion correlated with the amount of MDR3 P-gp. We conclude that the human MDR3 P-gp is functionally homologous to the murine Mdr2 P-gp and that it can fully replace this P-gp in Mdr2 (-/-) mice, restoring the excretion of phospholipids into the bile. The phospholipid excretion is limited by the amount of MDR3 or Mdr2 P-gp. The excretion of cholesterol is not tightly coupled to the excretion of phospholipids in these mice, because a very low phospholipid excretion level is sufficient to give almost wild-type cholesterol excretion into the bile.  相似文献   

2.
3.
Biliary lipid secretion is a complex process involving a multitude of metabolic pathways. It has always been assumed that bile salt secretion (BSec) fully controls this process. Recently we have demonstrated, that mdr2 P-glycoprotein (P-gp) is an important controlling step as well. In this study we have analysed the control structure of this pathway with Metabolic Control Analysis. METHODS: FVB mice homozygous (+/+) or heterozygous (+/-) for mdr2 P-glycoprotein were infused via the tail vein with tauroursodeoxycholate in stepwise increasing concentrations. Bile was collected and biliary lipids were determined by standard techniques. RESULTS: To simplify the pathway we have lumped all reactions involved in BSsec into bile in one step. Since this step is not controlled by the canalicular BS concentration, the FCC of BS secretion on phospholipid secretion (PLsec) could be calculated from a plot between BS and PL secretion. The FCC of BSsec varied from 80% at low flux to a value of 90% at maximal BS output. The FCC of mdr2 P-gp was determined by varying the gene dose of mdr2 P-gp. Since PLsec showed linear kinetics towards canalicular BS the FCC could be calculated via the Deviation index. The values for the FCC of mdr2 P-gp in (+/+) mice vary from 80% at low flux to 125% at maximal BS output. CONCLUSIONS: Both BS secretion and mdr2 P-gp strongly control biliary phospholipid secretion. The sum of the FCCs of both steps is always much higher than 100% implicating the presence of step(s) which exert negative control. We hypothesize that steps controlling biliary water transport account for the negative control.  相似文献   

4.
Within the "primary" cholestasis we can discriminate "essential" forms due to an endogenous biochemical error of bile acid metabolism and/or secretion and "conditioned" forms, in which a known precipitating factor is required to elicit the functional disorder responsible for cholestasis. Among the essential forms of cholestasis must be included benign recurrent intrahepatic cholestasis or Summerskill-Walshe disease, Aagenaes disease, progressive familial intrahepatic cholestasis or Byler's disease, and forms due to disorders of the peroxisomes. Benign recurrent intrahepatic cholestasis, the best known form, is characterized by recurrent episodes of itching and jaundice with an acute onset separated by symptom-free intervals, which shows no tendency to progress to liver failure. The conditioned cholestasis group comprises cholestasis of pregnancy and drug-induced cholestasis. Benign recurrent cholestasis of pregnancy is a form induced "by" pregnancy and not a form occurring "in" pregnancy, such as cholestasis due to hepatitis, to primary biliary cirrhosis, to cholelithiasis. Drug-induced cholestasis is a chapter of great clinical relevance: forms due to steroid hormones and due to phenothiazines are discussed.  相似文献   

5.
Leukemia/lymphoma cells, clinically refractory to therapy are often associated with expression of P-glycoprotein (P-gp), which is encoded by the multidrug resistance (MDR) gene, mdr1. Cell lines expressing mdr1 exhibit resistance to several structurally unrelated lipophilic drugs, such as anthracyclines, vinca alkaloids, and epopodophyllotoxins. This MDR can be conferred to drug-sensitive cells mdr1 cDNA transfer. In resistant cells, MDR is characterized by overexpression of P-gp and by the enhanced efflux, and P-gp fluorescence probe, rhodamine 123 (Rh 123). This can be circumvented by addition of certain non-cytotoxic drugs, such as verapamil and cyclosporin A.  相似文献   

6.
Cholestasis is associated with hypercholesterolemia and appearance of the abnormal lipoprotein X (LpX) in plasma. Using mice with a disrupted Mdr2 gene, we tested the hypothesis that LpX originates as a biliary lipid vesicle. Mdr2-deficient mice lack Mdr2 P-glycoprotein, the canalicular translocator for phosphatidylcholine, and secrete virtually no phospholipid and cholesterol in bile. Bile duct ligation of Mdr2(+)/+ mice induced a dramatic increase in the plasma cholesterol and phospholipid concentration. Agarose electrophoresis, density gradient ultracentrifugation, gel permeation, and electron microscopy revealed that the majority of phospholipid and cholesterol was present as LpX, a 40-100 nm vesicle with an aqueous lumen. In contrast, the plasma cholesterol and phospholipid concentration in Mdr2(-)/- mice decreased upon bile duct ligation, and plasma fractionation revealed a complete absence of LpX. In mice with various expression levels of Mdr2 or MDR3, the human homolog of Mdr2, we observed that the plasma level of cholesterol and phospholipid during cholestasis correlated very closely with the expression level of these canalicular P-glycoproteins. These data demonstrate that during cholestasis there is a quantitative shift of lipid secretion from bile to the plasma compartment in the form of LpX. The concentration of this lipoprotein is determined by the activity of the canalicular phospholipid translocator.  相似文献   

7.
BACKGROUND/AIMS: Intrahepatic cholestasis of pregnancy is characterised by increased levels of serum bile acids. Ursodeoxycholic acid therapy corrects the serum bile acid profile. The aims of this study were: (i) to investigate bile acid excretion into colostrum of women with intrahepatic cholestasis of pregnancy; (ii) to compare concentrations of bile acids in serum and colostrum of non-treated and ursodeoxycholic acid-treated patients; and (iii) to clarify whether ursodeoxycholic acid is eliminated into colostrum following treatment. METHODS: Bile acids were assessed by gas chromatography and high-performance liquid chromatography in serum collected at delivery, and in colostrum obtained at 2+/-1 days after labour, from patients with intrahepatic cholestasis of pregnancy, non-treated (n=9) and treated (n=7) with ursodeoxycholic acid (14 mg/kg bw per day, for 14+/-7 days) until parturition. RESULTS: The concentration of total bile acids in colostrum from patients with intrahepatic cholestasis of pregnancy was higher than in normals (23.3+/-14.8 micromol/l vs. 0.7+/-0.2 micromol/l, p<0.01) and cholic acid was a major species (19.0+/-13.1 micromol/l), reflecting the elevated concentrations in maternal serum (48.9+/-21.0 micromol/l, total bile acids; 33.9+/-16.7 micromol/l, cholic acid. Following ursodeoxycholic acid administration, total bile acids and cholic acid levels in colostrum diminished to 5.7+/-2.5 micromol/l and 3.6+/-1.5 micromol/l, respectively; the proportion of cholic acid decreased (60.6+/-8.0% vs. 76.8+/-5.0%, p<0.05). The ursodeoxycholic acid concentration in colostrum was maintained following treatment; its increased percentage (9.4+/-3.2% vs. 1.0+/-0.2%, p<0.01) was still lower than in maternal serum (20.8+/-3.6%, p<0.05). Only a small proportion (<1%) of lithocholic acid was found in colostrum following therapy. CONCLUSIONS: Bile acid concentrations are elevated and cholic acid is the major species accumulating in colostrum, reflecting serum bile acid profiles in intrahepatic cholestasis of pregnancy. Ursodeoxycholic acid therapy decreases endogenous bile acid levels in colostrum.  相似文献   

8.
9.
Cotransfer of a therapeutic gene together with the human MDR1 gene provides an opportunity to increase the number of transduced marrow cells, expressing the therapeutic gene, by in vivo selection for MDR1. We have used an Lg-MDR1-IRES-neo (LgMIN) retroviral vector, containing MDR1 and neo genes, separated by the EMCV IRES. Human HeLa or canine CTAC cells, transduced with GALV env pseudotyped LgMIN at an MOI of less than 0.01 to ensure 1 proviral copy/genome, were selected with either G418 for neo expression or colchicine for MDR1 expression. The titer determined on HeLa cells with G418 selection was eight-fold higher than that with colchicine selection. In contrast, the same viral supernatant exhibited only a 1.4-fold difference between neo- and MDR1-based viral titer values for CTAC cells. The transduced HeLa cells, with one intact proviral copy per genome, exhibited a 55-fold higher resistance to G418 but only a 4-fold higher resistance to colchicine and a 2-fold higher resistance to Taxol compared with nontransduced cells. About 23% of the transduced cell population did not express vector-derived P-glycoprotein (P-gp) as detected by anti-human P-gp MAb MRK-16. This could explain the difference in viral titers obtained on CTAC cells but not that obtained on HeLa cells. The vector-mediated increase in expression of P-gp was about 20-fold higher in CTAC cells as compared with HeLa cells. These results indicated suppression of expression of vector-derived MDR1 in HeLa cells, in contrast with CTAC cells. To investigate further the possible reasons for this difference, genomic DNA was isolated from the G418-resistant individual colonies of infected cells and analyzed by PCR for full-length proviral MDR1. For transduced CTAC and HeLa cells, selected at a G418 concentration of 1 mg/ml, PCR detected aberrant forms of MDR1 in 17 to 25% of colonies tested. The aberrant forms consisted of MDR1 genes with 2- and 0.7-kb deletions. DNA sequencing across the 2-kb and the 0.7-kb deletion junction suggests cryptic splicing in the producer cell line as the origin of these deletions. The 2-kb deletion corresponds to MDR1 mRNA cryptic splicing via donor (codon 113) and acceptor (codon 773). The 0.7-kb deletion corresponds to splicing via the same donor and a different acceptor (codon 344). When transduced HeLa cells were selected at a higher concentration of G418 (3 mg/ml), the aberrant forms were detected at an increased frequency of about 50% of colonies tested. These results indicate that vector-derived MDR1 is a poor selective marker in HeLa cells but not in CTAC cells and that deletions, which inactivated the MDR1 gene in a bicistronic Mo-MuLV vector, may provide an advantage for expression of the second transgene in HeLa cells.  相似文献   

10.
BACKGROUND & AIMS: Cholestasis complicates total parenteral nutrition (TPN) in preterm infants. Ursodeoxycholic acid (UDCA) is used for several cholestatic problems. The hypothesis of this study was that intravenous UDCA prevents TPN-induced cholestasis by (1) maintaining normal basal and stimulated bile flow, (2) altering bile composition, and (3) changing hepatocyte membrane composition and Na+,K(+)-adenosine triphosphatase (ATPase) activity. METHODS: Three groups of piglets were studied: group 1 received sow's milk, groups 2 and 3 received TPN, and group 3 also received 100 mumol.kg-1.day-1 UDCA intravenously. After 3 weeks, basal and stimulated bile flow were measured. Cholesterol, bile acids, phospholipids, and phospholipid fatty acids were analyzed in bile, and fluidity, phospholipid fatty acid composition, and Na+,K(+)-ATPase were analyzed in hepatocyte membranes. RESULTS: Bile acid secretion and basal and stimulated bile flow were similar in control and UDCA-treated animals but reduced to < 50% in the TPN group. Bile acid-dependent and -independent bile flow were lower in the TPN group. UDCA did not normalize abnormalities in TPN-induced bile composition. Sinusoidal but not canalicular membrane fluidity was different in TPN than in control and UDCA-treated animals. UDCA also increased Na+,K(+)-ATPase activity. Bile and membrane phospholipid fatty acids reflected dietary fatty acids. CONCLUSIONS: Intravenous UDCA improves bile flow and reduces bilirubin levels in the serum and liver in piglets with TPN-induced cholestasis.  相似文献   

11.
We investigated sequential changes in bile flow, serum and biliary biochemical parameters in phalloidin-induced cholestasis in rats. Intrahepatic cholestasis was induced by administration with phalloidin (500 microg/kg) for 7 days, and then the animals were allowed to survive for 1, 2, 4, 7, 14 and 28 days after the last treatment. In phalloidin-treated rats, bile flow significantly decreased up to 4 days of recovery, compared with the control animals. In contrast, serum ALP activity, LAP activity, cholesterol concentration and phospholipid concentration exhibited a marked elevation throughout the recovery periods. For biliary parameters, bilirubin excretion rate was unchanged but, cholesterol excretion rate showed a marked decrease throughout the recovery periods. These results demonstrate that some parameters, particularly important indexes of cholestasis (serum ALP, cholesterol, bile flow and so on), continued significant changes at least 4 days after the last administration of phalloidin. These results demonstrate that successive treatment with phalloidin can cause damage in most of serum and biliary parameters at a chronic stage of cholestasis. Thus, our findings may provide useful information for diagnosis of drug-induced cholestasis and help to further elucidate the biochemical mechanisms of drug-induced cholestasis in humans.  相似文献   

12.
The aim of this study was to investigate the link between protein kinase C (PKC) and multidrug resistance (mdr) phenotype. The expression of both was studied in doxorubicin-resistant MCF-7/Adr cells as they reverted to the wild-type phenotype when cultured in the absence of drug. The following parameters were measured in cells 4, 10, 15, 20 and 24 weeks after removal of doxorubicin; (1) sensitivity of the cells towards doxorubicin; (2) levels of P-glycoprotein (P-gp) and MDR1 mRNA; (3) levels and cellular localization of PKC isoenzyme proteins alpha, theta and epsilon; and (4) gene copy number of PKC-alpha and MDR1 genes. Cells lost their resistance gradually with time, so that by week 24 they had almost completely regained the drug sensitivity seen in wild-type MCF-7 cells. P-gp levels measured by Western blot mirrored the change in doxorubicin sensitivity. By week 20, P-gp had decreased to 18% of P-gp protein levels at the outset, and P-gp was not detectable at week 24. Similarly, MDR1 mRNA levels had disappeared by week 24. MCF-7/Adr cells expressed more PKCs-alpha and -theta than wild-type cells and possessed a different cellular localization of PKC-epsilon. The expression and distribution pattern of these PKCs did not change for up to 20 weeks, but reverted back to that seen in wild-type cells by week 24. MDR1 gene amplification remained unchanged until week 20, but then was lost precipitously between weeks 20 and 24. The PKC-alpha gene was not amplified in MCF-7/Adr cells. The results suggest that MCF-7/Adr cells lose MDR1 gene expression and PKC activity in a co-ordinate fashion, consistent with the existence of a mechanistic link between MDR1 and certain PKC isoenzymes.  相似文献   

13.
We describe a metabolic defect in bile acid synthesis involving a deficiency in 7alpha-hydroxylation due to a mutation in the gene for the microsomal oxysterol 7alpha-hydroxylase enzyme, active in the acidic pathway for bile acid synthesis. The defect, identified in a 10-wk-old boy presenting with severe cholestasis, cirrhosis, and liver synthetic failure, was established by fast atom bombardment ionization-mass spectrometry, which revealed elevated urinary bile acid excretion, a mass spectrum with intense ions at m/z 453 and m/z 510 corresponding to sulfate and glycosulfate conjugates of unsaturated monohydroxy-cholenoic acids, and an absence of primary bile acids. Gas chromatography-mass spectrometric analysis confirmed the major products of hepatic synthesis to be 3beta-hydroxy-5-cholenoic and 3beta-hydroxy-5-cholestenoic acids, which accounted for 96% of the total serum bile acids. Levels of 27-hydroxycholesterol were > 4,500 times normal. The biochemical findings were consistent with a deficiency in 7alpha-hydroxylation, leading to the accumulation of hepatotoxic unsaturated monohydroxy bile acids. Hepatic microsomal oxysterol 7alpha-hydroxylase activity was undetectable in the patient. Gene analysis revealed a cytosine to thymidine transition mutation in exon 5 that converts an arginine codon at position 388 to a stop codon. The truncated protein was inactive when expressed in 293 cells. These findings indicate the quantitative importance of the acidic pathway in early life in humans and define a further inborn error in bile acid synthesis as a metabolic cause of severe cholestatic liver disease.  相似文献   

14.
The purpose of this study was to determine the relationship between segmental hyperintensity of the liver on T1-weighted images and segmental cholestasis in patients with obstructive jaundice. T1-weighted and T2-weighted MR images were obtained of 73 patients with obstructive jaundice caused by various diseases. Fat-suppressed T1-weighted images were also obtained of 10 patients. Eleven patients with segmental intrahepatic bile duct dilatation (cholestasis) showed segmental hyperintensity on T1-weighted images and/or fat-suppressed T1-weighted images and no signal intensity difference on T2-weighted images. Sixty-two patients with widespread intrahepatic bile duct dilatation showed no intensity difference on T1-weighted and T2-weighted images (P < .01). Segmental hyperintensity on T1-weighted images was correlated with intrahepatic cholestasis.  相似文献   

15.
16.
The MDR1 gene product, P-glycoprotein (P-gp), works as a transmembrane efflux pump for several cytotoxic products, representing a major cause for cancer treatment failure. Rhodamine 123 (Rh123), a low toxic fluorescent probe commonly used to assess mitochondrial bioenergetics in living cells, has also been used to measure the efflux activity of P-gp in both normal and malignant cells. Analysis of variation in cellular fluorescence by measuring the rates of Rh123 influx and efflux, together with the effect of mdr reversing agents, allows the investigation of drug-resistant phenotypes in cancer samples. We have studied the functional activity of P-gp in human leukemic cell lines using flow cytometry, taking into consideration that variables such as Rh123 cytotoxicity, culture conditions, cell membrane integrity, as well as the effect of specific P-gp modulators, can impair the resolution of the Rh123-efflux measurements. The studies show that: (1)optimal non-cytotoxic concentrations of Rh123 which allow appropriate color compensation are in the range of 50-200 ng/ml; (2) life-gating allows accurate measurement on the 50% average rate of Rh123 efflux; (3) relative efficiency of P-gp inhibitors was PSC-833 > cyclosporin A > verapamil; and (4) the presence or absence of fetal calf serum had no effect on the bioavailability of chemosensitizer agents, with the exception of serum-free experiments, which showed a significant decrease in P-gp activity under the presence of PSC-833 (P = 0.05). Hence, we recommend this experimental strategy for clinical practice better to study the cellular drug resistance phenotype.  相似文献   

17.
A family study was prompted by the presence of benign recurrent intrahepatic cholestasis in three members and probably in a fourth. Pruritus and/or jaundice occurred during pregnancy in nine members. Two additional members suffered from pruritus while using oral contraceptives. The literature on benign recurrent intrahepatic cholestasis since 1959 describes at least 57 cases. A familial form of this condition proved to be fairly common. There seems to be a relation to the intrahepatic cholestasis sometimes seen during pregnancy and during oral contraceptive use. The data of the family study are suggestive for an interrelation of the three types of intrahepatic cholestasis, although a common denominator remains obscure.  相似文献   

18.
1. Homozygously mdr1a gene disrupted mice (mdr1a(-/-) mice) and wild type mice (mdr1a(+/+) mice) were used to develop a method for P-glycoprotein (P-gp) function imaging non-invasively and to study the effect of a P-gp reversal agent on its function in vivo. 2. [11C]verapamil (0.1 mg/kg) was administered and the changes in tissue concentrations were determined ex vivo by organ extirpation and in vivo with PET. To block P-gp function, cyclosporin A was administered. 3. Biodistribution studies revealed 9.5-fold (P < 0.001) and 3.4-fold (P < 0.001) higher [11C]verapamil in the brain and testes of mdr1a(-/-) mice than in mdr1a(+/+) mice. Cyclosporin A (25 mg/kg) increased [11C]verapamil levels in the brain and testes of mdr1a(+/+) mice in both cases 3.3-fold (P < 0.01 (brain); P < 0.001 (testes)). Fifty mg/kg cyclosporin A increased [11C]verapamil in the brain 10.6-fold (P < 0.01) and in the testes 4.1-fold (P < 0.001). No increases were found in the mdr1a(-/-) mice. This indicates complete inhibition of P-gp mediated [11C]verapamil efflux. 4. Positron camera data showed lower [11C]verapamil levels in the brain of mdr1a(+/+) mice compared to those in mdr1a(-/-) mice. [11C]verapamil accumulation in the brain of mdr1a(+/+) mice was increased by cyclosporin A to levels comparable with those in mdr1a(-/-) mice, indicating that reversal of P-gp mediated efflux can be monitored by PET. 5. We conclude that cyclosporin A can fully block the P-gp function in the blood brain barrier and the testes and that PET enables the in vivo measurement of P-gp function and reversal of its function non-invasively.  相似文献   

19.
20.
BACKGROUND/AIMS: The mouse mdr2 gene encodes a P-glycoprotein expressed in the canalicular membrane of the hepatocyte. Mice in which this gene has been inactivated (mdr2 -/-) show a defect in biliary phospholipid and cholesterol secretion and develop non-suppurative cholangitis. We hypothesized that secretion of bile salts without lipids initiates this liver disease. METHODS: To delineate the pathologic process, mdr2 (-/-) mice were fed different bile salt-supplemented diets for 22 weeks after weaning. Aspects of liver pathology including eosinophilic bodies, portal inflammation, ductular proliferation, mitotic activity and fibrosis were semi-quantitatively scored. RESULTS: It was observed that liver pathology was more severe in female than in male mice when fed a purified control diet. This correlated with a more hydrophobic bile salt composition of female vs. male bile. When increasing amounts of cholate were added to the diet (0.01% and 0.1%), the secretion of taurocholate increased and this was accompanied by a more severe liver pathology. At the high dose of cholate (0.1%), the bile salt compositions of male and female mice became similar, as did the severity of the histological score. Addition of cholate to the diet did not induce liver pathology in (+/+) mice. Addition of ursodeoxycholate to the diet (0.5%) led to a near complete replacement of biliary bile salts by tauroursodeoxycholate and this reduced pathology and dissipated the difference between males and females. CONCLUSIONS: These observations support our hypothesis that liver pathology in the mdr2 (-/-) mouse is caused by bile salts and depends on the hydrophobicity c.q. cytotoxicity of biliary bile salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号