首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以NiSO4、ZnSO4和Nd(NO3)3为原料,采用共沉淀快速冷冻法制备出了复合掺杂稀土Nd(III)和Zn(II)的非晶态氢氧化镍粉体材料。测试发现:样品材料微结构无序性强,结晶水含量较高。将样品材料制备成镍电极并组装成MH—Ni电池,在80mA/g恒电流充电5.5h、40mA/g恒电流放电、终止电压为1.0V的充放电制度下,复合掺杂6%Nd(III)和6%Zn(II)样品材料电池的放电平台为1.2624V,放电比容量为343.12mAh/g,远高于目前应用的B-Ni(OH)2电极活性材料的放电比容量。  相似文献   

2.
Cu(Ⅱ)和Fe(Ⅲ)掺杂非晶相Ni(OH)2的结构与电化学性能   总被引:1,自引:0,他引:1  
采用微乳液快速冷冻沉淀法制备Cu(Ⅱ)和Fe(Ⅲ)复合掺杂的非晶相氢氧化镍。利用XRD、SEM、EDS、Raman光谱测试分析样品的结构形态,同时将其作为正极活性材料组装成MH—Ni电池,测试其电化学性能。测试结果表明,Cu(Ⅱ)和Fe(Ⅲ)较好的溶于Ni(OH)2的微结构内部,样品粉体材料微粒均匀,微结构无序性强、缺陷较多。在制备体系采用在55℃、pH=11,搅拌反应2h的工艺条件下,复合掺杂比Fe为3%、Cu为5%(质量分数)所制备样品合成的电极,在80mA/g恒电流充电5h,40mA/g恒电流放电,终止电压为1.0V的充放电制度下,其首次放电比容量达353.82mAh/g,放电平台为1.268V,电极材料结构稳定,循环可逆性良好,表现出较高的电化学活性。  相似文献   

3.
Cl-和Al3+复合掺杂α-Ni(OH)2的电化学性能   总被引:1,自引:0,他引:1  
采用化学反应共沉淀法制备出Cl-和Al3 阴阳离子复合掺杂的α-Ni(OH)2粉体材料。对其进行了微结构表征分析和电化学性能测试,结果表明:样品材料具有较多的微结构缺陷,用作MH-Ni电池的正极活性材料时,在充放电过程中电化学阻抗较小、质子迁移能力强。电池在以80 mA/g恒电流充电5 h,40 mA/g恒电流放电,终止电压为1.0 V的充放电制度下,其放电比容量达344.3 mAh/g,且放电工作电压稳定,循环可逆性较好,表现出较高的电化学活性。  相似文献   

4.
采用微乳液快速冷冻共沉淀法制备出Y(Ⅲ)和Co(Ⅱ)复合掺杂非晶态Ni(OH)。电极活性粉体材料样品。采用XRD、SAED、SEM、EDS和Raman光谱对其结构形貌和成分进行表征分析,同时将样品组装成碱性MH-Ni电池,进行了电化学性能测试。结果发现,Y(Ⅲ)和Co(Ⅱ)复合掺杂非晶态Ni(OH)2样品材料内部微结构缺陷较多,无序性强,作为活性物质合成镍电极材料,其在电极反应过程中电荷转移电阻较低,导电能力增强,其样品电极以80mA·g^-1恒流充电6h,40mA·g^-1恒流放电,终止电压为1.0V的充放电制度下,放电平台电压为1.278V,放电容量高达335.7mAh·g^-1。  相似文献   

5.
Al(OH)3掺杂非晶态氢氧化镍的制备及其电化学性能   总被引:4,自引:0,他引:4  
采用微乳液法合成了Al(OH)3掺杂非晶态Ni(OH)2粉体.研究了温度、pH值和掺杂剂的含量等各种因素对其电化学性能的影响并分析了其作用机理.实验表明样品制备的工艺条件为t=50℃、pH=12、 Al(OH)3掺杂含量为5%时,样品电极容易活化,循环性能较好.采用以100 mA/g恒电流充电4 h,以50 mA/g恒电流放电,终止电压为1.0 V的充放电制度,其比容量达346.1 mA·h/g,放电工作电位平稳于1.24 V.  相似文献   

6.
采用微乳液快速共沉淀法制备了掺杂Co非晶态氢氧化镍超细粉体样品材料,对其晶态、结构形貌进行了表征分析,研究了材料合成条件对其充放电等性能的影响,讨论其相应的作用机理,并测定了合成掺杂材料的循环伏安特性.所制材料样品的氧化还原可逆循环性和稳定性好:样品电极在恒流100 mA/g下充电4 h,50 mA/g放电,终止电压为1.0 V时,放电电压稳定于1.240 V,放电比容量达317.75 mAh/g,电化学活性较高.  相似文献   

7.
通过采用NiC2O4*2H2O和NaOH进行固相反应,制备出10~20 nm的β-Ni(OH)2和20~30 nmNiO粉体,样品按一定的比例掺杂Co(OH)2和石墨粉制备复合电极,研究其电化学性能.结果表明掺杂Co(OH)2的纳米Ni(OH)2和NiO复合电极其电化学性能有明显的改善,其电极结构稳定,充电效率高,开路电位达2.4 V,电极经10 mA/cm2恒电流充电3 h后,以0.9 mA/cm2进行恒流放电,放电时间达到16h以上,放电容量明显增大,放电电位平稳.  相似文献   

8.
以Ni(OH)_2为正极材料掺杂Co~(2+)、Zn~(2+)、Al~(3+)离子,制备铁镍电池。利用X射线衍射(XRD)对制备的Ni(OH)_2进行表征,利用电化学仪器对制备的正极材料性能进行分析。结果表明,纯Ni(OH)_2正极电化学性能差,放电比容量只有223.9 mAh/g;单一掺杂Co~(2+)、Zn~(2+)、 Al~(3+)到镍电极后,电池的放电比容量明显升高;将Co~(2+)、Zn~(2+)、Al~(3+)混合掺杂到镍电极后,电池的放电比容量好于单一掺杂,可达到324.5 mAh/g左右。  相似文献   

9.
采用化学法并通过KlO3和盐酸与苯胺复合掺杂合成掺杂态聚苯胺。用红外光谱和扫描电镜对掺杂态聚苯胺进行了结构形态分析。将掺杂态的聚苯胺混合20%的石墨粉体,制成聚合物复合电极,以锌为负极组成电池,在恒电流条件下进行充放电性能的测试,结果表明,电极开路电位达1.8V,以20mA/cm^2恒电流充电,2mA/cm^2恒电流放电,放电工作平台为1.4V,设定终止电压为1.1V时,可持续放电13h,电池容量较大,结构稳定。  相似文献   

10.
针对MnO_2/Ni(OH)_2@Ni复合电极材料制备工艺复杂的问题,提出快速温和的绿色制备技术.以MnCl_2·4H_2O、H_2O_2和泡沫镍为原料,水热体系下研究不同反应温度对MnO_2/Ni(OH)_2@Ni复合电极材料结构、电化学性能的影响.结果表明,在反应温度90℃、水热3h,成功在泡沫镍上沉积分布均一的MnO_2/Ni(OH)_2纳米片.测试结果表明,在该条件下制备的MnO_2/Ni(OH)_2@Ni电极材料展现出优异的电性能,即高的比容量(电流密度为2.5mA/cm~2,放电比容量为7.4F/cm~2)、好的倍率性能、好的循环稳定性(充放电循环500次,容量保持率为78%).  相似文献   

11.
采用共沉淀法制备了LiCoO2包覆LiNi0.78Co0.2Zn0.02O2锂离子电池正极材料,对材料进行XRD、SEM的分析结果表明,该材料具类α-NaFeO2(R-3 m)结构,而且微观颗粒大小均匀.电化学测试结果表明,用LiCoO2进行表面包覆后比未包覆材料的初期放电比容量略有降低,但是材料的循环性能明显提高.包覆材料的首次恒流(60 mA.cm2,3.0~4.2 V,vs.Li /Li)充、放电比容量分别为243.63 mAh.g-1和204.58 mAh.g-1,首次循环效率为83.97%,200次循环后比容量仍为197.06 mAh.g-1,不可逆容量损失仅为7.52 mAh.g-1,容量保持率达到96.0%以上,具有很好的循环性能.  相似文献   

12.
为提高锂离子电池正极材料硅酸亚铁锂(Li2FeSiO4)的容量和倍率性能,以酒石酸为碳源、尿素为氮源,用溶胶凝胶法制备氮掺杂碳包覆硅酸亚铁锂复合材料(NCLFS),通过元素分析、XRD、SEM、拉曼光谱、XPS、恒电流充放电测试和交流阻抗谱等方法对样品的结构及电化学性能进行表征。结果表明:NCLFS复合材料由平均粒径为23 nm的Li2FeSiO4纳米晶组成,较小的粒径能够缩短锂离子扩散路径,提高锂离子的迁移速率;N的引入,提高了NCLFS材料的电导率;与无尿素掺杂的CLFS材料相比,NCLFS复合材料表现出了更高的比容量、优异的倍率性能和循环稳定性,0.2 C放电倍率下,放电比容量高达223.2 mA·h/g(相当于1.34Li+),循环100周后仍能保持192.9 mA·h/g。  相似文献   

13.
以Li_2CO_3、NiCO_3·2Ni(0H)_2·4H_20、MnC0_3、Co(CH_3COO)_2·4H_20、醋酸溶液和聚乙烯醇为原料,制备出具有α-NaFeO_2层状结构的Li_(1.42)Ni(0.08)Mn_(0.7)Co_(0.08)O_(2.00)富锂固溶体正极材料.通过红外光谱、X射线衍射、恒电流充放电测试、交流阻抗和循环伏安法等方法研究了制备样品的结构及电化学性能.研究表明:按0.707 5 mol碳酸锂比例加入2.5 g醋酸时制备得到的正极材料充放电性能最好,在1C条件下,首次放电容量93.2 mAh/g,30次循环后容量达到177.2 mAh/g.  相似文献   

14.
以铁粉(Fe)为催化剂,通过热丝化学气相沉积的方法制备纳米碳纤维(CNF),得到CNF/Fe复合粉体,后将其代替乙炔黑用于锂硫电池正极.采用扫描电子显微镜和X射线衍射的方法对CNF/Fe进行表面形貌和结构表征,采用恒流放电和交流阻抗测量法对正极进行电化学性能测试.结果表明,制备的CNF/Fe中CNF的直径在200 nm附近.在0.2 mA/cm2的电流密度下充放电,含有CNF/Fe的正极在2.0 V附近出现长的放电平台,正极中硫的初次放电比容量达801 mAh/g,40次循环后的可逆放电比容量仍有498 mAh/g.  相似文献   

15.
用微乳液法制备了Co、Sr复合掺杂β-Ni(OH)2纳米粒子,详细研究了合成工艺条件对化学粒子结构形态与电化学性能的影响,探讨了掺杂纳米氢氧化镍电化学活性的作用机理.对样品分别进行了XRD、TEM分析,以及充放电性能和循环伏安特性的测试.结果表明,在pH=10.5、t=40℃,掺杂剂CoSO4、SrCl2的质量分数为3%、7%时,样品的平均粒径为35 nm左右,且分布较为均匀,无明显团聚现象.该条件下制备的样品以0.1C的倍率放电,在终止电位为1.0 V时,其比容量可达286.2 mAh/g,放电工作电位平稳于1.27 V.  相似文献   

16.
为了利用简单的生产工艺制备性能优异的锂离子电池负极材料,采用电弧熔炼-甩带的工艺制备出铁钒合金条带,再通过氧化还原方法成功制备出纳米多孔铁掺杂钒氧化物(Fe-VO_x)复合材料,对材料物相和结构进行了表征,并且对比分析了在不同还原温度下纳米多孔Fe-VO_x复合材料的电化学性能。结果表明:在还原温度为500℃、5%H_2/Ar混合气氛下,材料电化学性能最优,在电流密度为0.1 A/g下,初始放电比容量为563.4 mA·h/g,在循环100圈后的放电比容量仍能达到441 mA·h/g,循环容量保持率达到78.2%,远大于石墨的理论比容量372 mA·h/g。这说明纳米多孔铁掺杂钒氧化物复合材料能够有效提高锂离子电池的能量密度,并且具有良好的电化学性能。  相似文献   

17.
采用X射线衍射仪、电池测试系统等,研究了采用Pechini法合成的锂离子电池正极材料LiCexNdxMn2-2xO4(x=0、0.012、0.014、0.016、0.018)的组织结构、首次充放电性能、循环稳定性能等。结果表明:当稀土元素掺入量较少(x≤0.014)时,样品由尖晶石型LiMn2O4相组成,否则,样品中将出现微量的杂质相(CeO2、Nd2O3);适量的稀土元素掺杂将使LiMn2O4样品的初始容量减小、循环稳定性能增加。LiCe0.014Nd0.014Mn1.972O4样品具有较好的循环稳定性能,其初始放电容量为124.8 mAh/g,经30次循环充放电后的容量保持在116.3 mAh/g,容量保持率为93.2%。  相似文献   

18.
高容量的过渡金属氧化物要想替代目前低容量的商业碳作为锂离子电池负极材料,必须设计解决碎化问题和电导率问题。本文通过热解和水热氧化法合成了N掺杂的碳基Co/Co3O4@C纳米粒子核壳结构复合材料。通过调整水热时间,可以获得结构完整、形态规则、尺寸均匀的产品。其作为锂离子电池电极材料,在0.1A/g恒流循环50次后,放电容量稳定在620 mA·h/g(碳质量分数为56.8%),高于其理论比容量,在2A/g恒流下250次循环后,可逆容量为572 mA·h/g,库仑效率可保持在99.8%左右。这说明具有良好分散性的N掺杂碳基Co/Co3O4@C纳米粒子核壳结构具有优良的结构稳定性和电导率,作为负极材料有希望应用于高容量、大功率的锂离子电池当中。  相似文献   

19.
采用水浴法在泡沫镍基底上生长MnO_2/Ni(OH)_2复合纳米片阵列材料,并通过恒流充放电和循环伏安法研究所得MnO_2/Ni(OH)_2的电化学性能。利用X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)分析产物的物相组成和微观形貌。结果表明:泡沫镍基底表面垂直生长着多孔纳米片阵列,纳米片间围成150~300nm的小孔;在电流密度为200mA/g时,所得纳米片阵列材料的首次放电比容量可达1575.4mAh/g,库伦效率为95.6%,100次循环材料的平均放电比容量达到1052.2mAh/g;这表明该复合材料具有较高的比容量和良好的循环性能。  相似文献   

20.
采用4,4′-二氨基联苯作为添加剂在盐酸介质中用恒电流法合成了致密鳞片状聚苯胺粉末,结构上与化学合成聚苯胺类似,属于掺杂态聚苯胺亚胺盐形式,但具有较好的电化学活性.采用涂布法用自制复合黏结剂制备出电池阴极和阳极,膜厚度可控且工艺简单.基于正交试验获得的最佳工艺条件组装锌//聚苯胺电池,电池在"ZnCl2+NH4Cl"电解液中的开路电压在1.5V左右,电压在1.7~0.7V之间进行循环充放电,2mA·cm-2的电流密度时聚苯胺电极放电容量达到131.4mAh·g-1.在35个循环时间里,每次循环测试电池放电容量平均衰减为0.07%,表明所组装电池循环性能及稳定性较好,具有替代传统铅酸电池的实际应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号