首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work was to study the behavioral effects elicited in adult cats by the selective D1 agonist, SKF 38393, and the D2 agonist, LY 171555, comparing their effects with those evoked by apomorphine. In 10 adult cats, 0.5, 1.0, 4.0, and 8.0 mg/kg IP of SKF 38393 were administered at random. A dose-response effect was observed related to alertness, indifference, and locomotion. The overall effect of SKF 38393 was inhibitory. To the same 10 animals, LY 171555 in doses of 0.25, 0.5, and 1.0 mg/kg were injected IP. This drug had an excitatory and more complex effect than what was observed with the D1 agonist. Increases in locomotion, in alertness, indifference, fear, olfaction, pupillary dilation, hallucination, limb flicking, and head shaking were recorded. Apomorphine given to the same cats, in a dose equimolar to 1.0 mg/kg of LY 171555, elicited behaviors that resembled those elicited by the latter drug, but of a lesser intensity and duration. The interval between the different treatments was approximately 2 months. These results show clearly that the D2 receptor is the main dopaminergic receptor involved in the mechanism of production of most of the behavioral effects produced by some of the dopaminergic agonist drugs like apomorphine.  相似文献   

2.
The effects of selective D1 or D2 dopamine receptor agonists and the indirect dopamine agonist cocaine on hippocampal acetylcholine release in mice of the C57BL/6 and DBA/2 inbred strains were investigated using intracerebral microdialysis. The D1 SKF 38393 (10, 20, 30 mg/kg, i.p.), the D2 agonist LY 171555 (0.5, 1, 2 mg/kg, i.p.) and cocaine (5, 10, 15 mg/kg, i.p.) all increased, dose-dependently, acetylcholine release in the hippocampus of C57BL/6 mice. Both the D1 agonist and cocaine did not produce any significant effect in DBA/2 mice. In the latter strain, however, LY 171555 produced a decrease in acetylcholine release that was evident after 60 min from injection of the doses of 0.5 and 1 mg/kg, but not at the dose of 2 mg/kg. The effects observed in C57BL/6 mice as well as those produced by low doses of LY 171555 in the DBA/2 strain were consistent with previous results obtained in rats. The present results indicate major strain-dependent differences in the effects of dopamine agonists on hippocampal acetylcholine release in mice. Moreover, they suggest a complex genotype-related neural organization of dopamine-acetylcholine interactions in the mesolimbic system. Finally, the strain differences in the effects of the dopamine agonists on hippocampal acetylcholine release parallel previously reported strain differences in the effects of these substances on memory consolidation.  相似文献   

3.
The effects of the opioid receptor antagonist naloxone on behavioural responses to the dopamine D1 receptor agonist SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) were assessed in the rat. SKF 38393 (5 mg/kg s.c.) induced grooming and vacuous chewing mouth movements. SKF 38393-induced grooming was dose-dependently attenuated by naloxone (0.375-1.5 mg/kg s.c), while vacuous chewing movements were unaffected. These findings suggest that dopamine D1 receptor agonist-induced grooming is dependent upon opioid systems, while vacuous chewing movements are likely to be mediated via different pathways.  相似文献   

4.
Many studies have used the D1 agonist SKF 38393 to characterize D1 receptor influences on firing rates in basal ganglia nuclei in vivo. However, SKF 38393 is a partial agonist and so may not be ideal for delineating D1 receptor effects. This study characterizes the effects of four full D1 agonists, SKF 82958 (chloro-APB), SKF 81297 (6-chloro-PB), dihydrexidine and A-77636, on the firing rates of midbrain dopamine and globus pallidus neurons. Recordings were done in fully anesthetized or paralyzed, locally anesthetized rats, and drugs were given systemically intravenously. Dihydrexidine, SKF 81297 and A-77636 were free of rate effects on midbrain dopamine neurons (up to 10.2 mg/kg) and also did not antagonize the inhibitory effects of quinpirole. In contrast, SKF 82958 strongly inhibited dopamine cells through activation of D2 autoreceptors (ED50 = 0.70 mg/kg). Of these drugs, SKF 82958 also was the only one to increase pallidal unit firing rates when given alone (at 5.0 but not 1.0 mg/kg); the other compounds appeared to be selective for postsynaptic D1 receptors. The results suggest that SKF 82958 may be more properly classified as a mixed D1/D2 agonist. In addition, all four agonists strongly potentiated the pallidal response to quinpirole, demonstrating a D1 receptor potentiation of D2 receptor effects. The results support the role of D1 receptors in the midbrain and globus pallidus as previously characterized with SKF 38393. The similar actions of partial and full D1 agonists in these systems support evidence for a D1 receptor reserve and possibly an effector system other than adenylate cyclase.  相似文献   

5.
AIM: To investigate the mechanisms of anti-inflammatory effect of matrine (Mat), its effects on mouse splenocyte proliferation, and release of interleukin-1 (IL-1) and interleukin-6 (IL-6) from mouse peritoneal macrophages. METHODS: Splenocyte proliferation was assayed by [3H] TdR incorporation. IL-1 and IL-6 activities were measured by thymocyte proliferation assay and B9 cell proliferation MTT colorimetric method, respectively. RESULTS: Mat (125-500 mg.L-1) obviously inhibited concanavalin A (Con A, 5 mg.L-1)- and lipopolysaccarides (LPS, 10 mg.L-1)-induced splenocyte proliferation and LPS-induced release of IL-1 and IL-6 from mouse peritoneal macrophages. CONCLUSION: Mat inhibited splenocyte proliferation and release of IL-1 and IL-6 in vitro.  相似文献   

6.
Aging differentially affects receptor function. In the present electrophysiological study we compared neuronal responsiveness to locally applied dopamine D1 and D2 receptor agonist in the striatum of female Fischer 344 rats aged 3 and 26-27 months. In a subgroup of the old rats, the nigrostriatal dopamine bundle was destroyed unilaterally with 6-hydroxydopamine (6-OHDA) to assess receptor plasticity in response to denervation. Spontaneous firing rate of striatal neurons was higher in aged compared to young rats. Higher doses of the D1 agonist SKF 38393 or the D2 agonist quinpirole were required to elicit a 50% change in firing rate in aged compared to young rats. No difference with SKF 38393 or quinpirole was detected between 6-OHDA denervated and control (nonlesioned) striatum in aged rats. Supersensitivity to D2 agonists has been reported following 6-OHDA lesions in young rats. These observations suggest that D2 receptors in aged rat striatum might not be as plastic as in younger rats.  相似文献   

7.
The role of drug efficacy in agonist-induced desensitization was studied in C-6 glioma cells transfected with the monkey dopamine D1A (mD1A) receptor. Dopamine pretreatment for 2 hr produced greater than 80% loss of responsiveness in the stimulation of cAMP accumulation that was blocked by the D1 antagonist SCH23390. A series of full and partial D1 agonists from structurally dissimilar classes were then examined. Three full agonists (dihydrexidine, SKF82958, A77636) desensitized the receptor to the same extent as dopamine, whereas two other full agonists (dinapsoline and A68930) and all the partial agonists tested (SKF38393, pergolide and d-lysergic acid diethylamide tartrate) produced only partial desensitization (i.e., 50% that of dopamine). Whereas partial agonists (i.e., SKF38393, pergolide and d-lysergic acid diethylamide tartrate) caused no alteration in ligand-accessible mD1A receptors, four of the full agonists (dopamine, dihydrexidine, dinapsoline, A68930) caused a 30 to 40% reduction in receptor number. One full agonist, A77636, caused nearly an 80% decrease in receptor number, despite the fact that the degree of functional desensitization was similar to the other full agonists. The desensitization of the D1 receptor was homologous, not affecting beta-2 adrenergic receptors endogenous to C-6 cells. Neither incubation with cAMP analogs, nor inhibition of protein kinase A, affected dopamine-induced desensitization, suggesting a cAMP-independent mechanism in this cell line. Together, these data suggest that functional desensitization of the mD1A receptor expressed in C-6 glioma cells is a cAMP-independent mechanism, cannot be predicted reliably from agonist efficacy for stimulating adenylate cyclase and can occur in the absence of changes in receptor number.  相似文献   

8.
There is good evidence that interference with the mesolimbic dopamine (DA) system results in impaired maternal responding in postpartum female rats. However, whether activation of the mesolimbic DA system is capable of promoting maternal behavior has not been investigated. This study examined whether increasing DA activity in various brain regions of pregnancy-terminated, naive female rats would stimulate the onset of maternal behavior. Experiments 1 and 2 examined the effects of microinjection of various doses (0, 0.2, or 0.5 μg/0.5 μl/side) of a D? DA receptor agonist, SKF 38393, or a D? DA receptor agonist, quinpirole, into the nucleus accumbens (NA) on latency to show full maternal behavior, and Experiment 3 determined the effects of SKF 38393 injection into a control site. Finally, because the medial preoptic area (MPOA) is also important for maternal behavior, receives DA input, and expresses DA receptors, the authors examined whether microinjection of SKF 38393 into MPOA was capable of stimulating the onset of maternal behavior. Results indicated that microinjection of SKF 38393 into either the NA or the MPOA facilitates maternal responding in pregnancy-terminated rats. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Nitric oxide (NO) in brain has been implicated in neuronal regulatory processes and in neuropathologies. Previously we showed that NO modified quinpirole-induced yawning, a behavioral measure of dopamine (DA) D3 receptor activation in rats. The aim of this study was to characterize the effect of nitro-L-arginine methyl ester HCl (NAME) and L-arginine HCl on reactivity of rats to the DA D1 receptor agonist SKF 38393 and DA D1 antagonist SCH 23390 in intact and neonatal 6-hydroxydopamine (6-OHDA)-lesioned rats (134 micrograms of base ICV at 3rd day after birth). L-arginine HCl (300 mg/kg i.p.) increased the oral activity response in 6-OHDA-lesioned rats, like SKF 38393, and induced catalepsy in intact control rats, like SCH 23390. In contrast, NAME had no effect on oral activity or catalepsy, but fully attenuated SKF 38393-induced oral activity. These findings indicate that L-arginine HCl has no apparent effect at the DA D1 receptor, but that NAME is effective in attenuating a DA D1 agonist-induced effect. Consequently NO may be an intracellular second messenger for supersensitized receptors associated with DA D1 agonist-induced oral activity.  相似文献   

10.
The purpose of the present study was to characterize pharmacologically dopamine D1 receptor-mediated inhibition of tuberoinfundibular dopamine neurons in males rats, and to determine if inhibitory dopamine D1 receptors oppose stimulatory dopamine D2 receptors and account for the inability of mixed dopamine receptor agonists to alter the activity of these neurons. Tuberoinfundibular dopamine neuronal activity was estimated by measuring the concentrations of the dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the median eminence, the region of the hypothalamus containing terminals of these neurons. Administration of the dopamine D1 receptor agonist (+/-)-1 phenyl-2,3,4,5-tetrahydro-(1 H)-3-benzazepine-7,8-diol (SKF38393) decreased median eminence DOPAC and increased plasma prolactin concentrations, whereas administration of the dopamine D1 receptor antagonist ((-)-trans,6,7,7a,8,9,13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H -benzo[d]naphtho-[2,1 b]azepine (SCH39166) increased median eminence DOPAC concentrations but had not effect on plasma prolactin. The inhibitory effect of SKF38393 on median eminence DOPAC concentrations was blocked by SCH39166. These results demonstrate that acute activation of dopamine D1 receptors inhibits the activity of tuberoinfundibular dopamine neurons and thereby increases prolactin secretion, and that under basal conditions dopamine D1 receptor-mediated inhibition of tuberoinfundibular dopamine neurons is tonically active. Administration of the dopamine D2 receptor agonist (5aR-trans)-5,5a,6,7,8,9,9a,10-octahydro-6-propyl-pyridol[2, 3-g]quinazolin-2-amine (quinelorane) increased median eminence DOPAC concentrations, and SKF38393 caused a dose-dependent reversal of this effect. Administration of the mixed dopamine D1/D2 receptor agonist R(-)-10,11-dihydroxy-apomorphine (apomorphine) had no effect per se, but blocked quinelorane-induced increases in DOPAC concentrations in the median eminence. These results reveal that concurrent activation of dopamine D1 and D2 receptors nullifies the actions of each of these receptors on tuberoinfundibular dopamine neurons, which likely accounts for the lack of an acute effect of mixed dopamine D1/D2 receptor agonists on these hypothalamic dopamine neurons.  相似文献   

11.
Catecholamine receptors of multiple classes have been shown to influence pineal melatonin synthesis in a species-specific manner. In these experiments, the effects of catecholamine receptor agonists on circadian melatonin rhythms of zebrafish (Danio rerio) pineal in vitro were examined. Cyclic application of adrenergic receptor agonists (norepinephrine, phenylephrine, clonidine, and isoproterenol) had no effect on zebrafish pineal melatonin release, nor on the circadian oscillator that regulates melatonin rhythms. Pineal melatonin release was partially suppressed by quinpirole, a D2 dopamine receptor agonist, but cyclic application of quinpirole did not reset the pineal circadian oscillator. Pineal melatonin release was unaffected by either dopamine or SKF38393, a D1 receptor agonist, suggesting that the effects of quinpirole were not mediated by dopamine receptors. The regulatory mechanisms underlying pineal melatonin rhythms appear to differ among teleosts.  相似文献   

12.
13.
The locomotor stimulatory effects of the dopamine D1 receptor partial agonist SKF 38393 were examined in male C57B1/6J mice. Non-habituated mice showed marked dose-related (3-300 mg/kg, SC) locomotor stimulation. The time-course effect was biphasic at very high doses (100-300 mg/kg), with dose-related locomotor depression followed by dose-related long-term hyperlocomotion. For all doses, locomotor effects were detectable throughout the 4-h test period. To determine whether these effects were mediated by D1 receptor stimulation, effects of SKF 38393 were assessed in combination with behaviorally inactive and active doses (0.1 and 0.2 mg/kg, respectively) of the selective D1 receptor antagonist SCH 39166. Both doses of SCH 39166 attenuated the hyperlocomotion induced by 30 mg/kg of the agonist to a similar degree. However, neither dose was able to reverse either the depressant or the stimulatory effects of 300 mg/kg SKF 38393. These results demonstrate effects of the prototypical D1 agonist previously unobserved, and raise questions concerning the nature of agonist/antagonist interactions at the D1 receptor subtype.  相似文献   

14.
To elucidate the neurochemical mechanism that underlies the effect of anti-parkinsonian agents on motor activities in the dopamine-depleted striatum, we evaluated AP-I and CREB DNA-binding activity in the striatum of 6-hydroxydopamine-lesioned rats by use of a gel mobility-shift assay. Rats with a unilateral lesion of the nigrostriatal dopamine pathway were injected i.p. with either SKF38393 (a DI receptor agonist), bromocriptine (a D2 receptor agonist), or levodopa (a Dl/D2 receptor agonist). Each treatment increased the number of rotational responses of rats contralateral to the lesioned side. However, only SKF38393 and levodopa increased AP-I and CREB DNA-binding activity in the dopamine-depleted striatum. As with the expression of c-fos, supersensitive DI receptors may play a key role in the enhanced induction of AP-I and CREB DNA-binding activity in the dopamine-depleted striatum. Supershift analysis revealed that c-Fos; and Jun family proteins are the main components for AP-1 induced in the dopamine-depleted striaturn by SKF38393 or levodopa.  相似文献   

15.
The dopamine D3/D2 receptor agonists 7-OH-DPAT, quinpirole, quinelorane, and PD128907, the mixed dopamine agonist apomorphine, the D2 agonist bromocriptine, and the D1/D5 agonist SKF38393 were examined in models of hypothermia and prepulse inhibition (PPI) in Wistar rats. As dopamine agonist-induced hypothermia has been proposed as a model of D3 receptor function, and dopamine agonists are known to disrupt PPI, drug potencies to induce hypothermia were established and compared with doses necessary to disrupt PPI. 7-OH-DPAT, quinpirole, quinelorane, PD128907, and apomorphine, reduced body temperature and disrupted PPI with a similar rank order of potency (quinelorane > quinpirole = 7-OH-DPAT > PD128907 = apomorphine). Bromocriptine and SKF38393 were ineffective in both models. In a separate study, the dopamine reuptake inhibitors cocaine and GBR 12909 had no effect on PPI. In a final set of studies, the D2/D3 antagonist raclopride blocked both 7-OH-DPAT-induced hypothermia and 7-OH-DPAT-induced PPI disruption. The 5-HT1A antagonist WAY 100,135, and the peripheral D2-like antagonist domperidone had no effect. These findings suggest that the hypothermia and PPI disruptions seen with some of these dopamine agonists may be mediated by central D3 receptors; however, only studies using more selective dopamine receptor ligands can definitively rule out effects at the D2 or D4 receptors.  相似文献   

16.
The inhibitory effect of 15 semi-synthetic analogues of glaucine (1) on the lipopolysaccharide (LPS)-induced and the concanavalin A (Con A)-induced proliferation of mouse splenocytes was compared in vitro. Isoboldine (3), bracteoline (4) and dehydroglaucine (9) showed a significantly higher potency to suppress LPS-induced proliferation than 1, while 7-hydroxy-4-methylglaucine (8), 7-formyldehydroglaucine (11), 7-acetyldehydroglaucine (13), 7-benzoyldehydroglaucine (14), oxoglaucine (15) and glaucine-quinol (16) were less inhibitory. Compounds 3, 4, boldine (5), 15 and 16 surpassed significantly the inhibition expressed by 1 on Con A-induced proliferative response. The effect was equal to the inhibition determined for mitomycin C (Mit C) with both mitogens. In contrast to all others analogues, thaliporphine (2) stimulated splenocyte proliferation in both assays. Antibody response against sheep red blood cells (SRBC) was lowered most strongly by cataline (6), 7-methyldehydroglaucine (10) and 16.  相似文献   

17.
The aim of this study was to elucidate electrophysiologically the actions of dopamine and SKF38393, a D1-like dopamine receptor agonist, on the membrane excitability of striatal large aspiny neurons (cholinergic interneurons). Whole-cell and perforated patch-clamp recordings were made of striatal cholinergic neurons in rat brain slice preparations. Bath application of dopamine (1-100 microM) evoked a depolarization/inward current with an increase, a decrease, or no change in membrane conductance in a dose-dependent manner. This effect was antagonized by SCH23390, a D1-like dopamine receptor antagonist. The current-voltage relationships of the dopamine-induced current determined in 23 cells suggested two conductances. In 10 cells the current reversed at -94 mV, approximately equal to the K+ equilibrium potential (EK); in three cells the I-V curves remained parallel, whereas in 10 cells the current reversed at -42 mV, which suggested an involvement of a cation permeable channel. Change in external K+ concentration shifted the reversal potential as expected for Ek in low Na+ solution. The current observed in 2 mM Ba2+-containing solution reversed at -28 mV. These actions of dopamine were mimicked by application of SKF38393 (1-50 microM) or forskolin (10 microM), an adenylyl cyclase activator, and were blocked by SCH23390 (10 microM) or SQ22536 (300 microM), an inhibitor of adenylyl cyclase. These data indicate, first, that dopamine depolarizes the striatal large aspiny neurons by a D1-mediated suppression of resting K+ conductance and an opening of a nonselective cation channel and, second, that both mechanisms are mediated by an adenylyl cyclase-dependent pathway.  相似文献   

18.
Dopamine receptor-coupled stimulation of inositol phosphate formation has been characterized extensively, but little is known about the diacylglycerol arm of this dual-signaling pathway. This study examined several parameters of cytidine diphosphate-diacylglycerol (CDP-DG) accumulation as an index of agonist-stimulated DG formation. Rat brain slices pre-labeled with 5-[3H]cytidine were incubated with various test agents in the presence of LiCl and accumulated CDP-DG analyzed. Dopamine and SKF38393 significantly and dose-dependently stimulated CDP-DG accumulation. SKF38393 responses were inhibited by neomycin and reversed by myo-inositol or by exclusion of LiCl. Compared to inositol phosphate formation in 2-[3H]inositol-prelabeled slices, the CDP-DG responses were proportionately greater, while the agonist EC50 values were similar between the two assays. The D1-receptor antagonist SCH23390 inhibited SKF38393-mediated responses at 0.1-10 microM concentrations, whereas greater concentrations reversed the inhibition. SKF38393 effects were completely blocked by the DG kinase inhibitor R59022, thus precluding any role for phospholipase-D or de novo phosphatidate synthesis in the dopaminergic response. D609 which inhibits phosphatidylcholine-specific phospholipase-C (PLC), potently inhibited both CDP-DG accumulation and inositol phosphate formation. These findings demonstrate that the selective D1-receptor antagonist SCH23390 is a partial agonist at the D1-like dopamine receptor that couples to phosphoinositide signaling, that dopaminergic facilitation of phosphoinositide signaling is independent of de novo phosphatidate synthesis, and that the widely used enzyme inhibitor, D-609, is probably not selective for phosphatidylcholine-specific PLC in brain slice preparations. The greater sensitivity of the CDP-DG measurement presents this assay as a reliable and possibly superior index of dopamine receptor-coupled PLC activation in intact tissues.  相似文献   

19.
In general, preweanling and adult rats respond similarly when challenged with competitive dopamine (DA) agonists or antagonists. In contrast, results using a noncompetitive antagonist suggest that the D1 and D2 receptor systems of preweanling and adult rats differ in some critical way. To further assess this phenomenon, the behavioral effects of irreversible receptor blockade were assessed across 8 days in NPA (a nonselective DA agonist), quinpirole (a D2 agonist), or SKF 38393 (a D1 agonist) treated 17-day-old rat pups. The irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) did not block the locomotor activity and rearing of NPA- or quinpirole-treated rat pups, nor did EEDQ reduce SKF 38393-induced grooming. Moreover, pretreatment with EEDQ appeared to potentiate the normal increases in locomotor activity and rearing produced by NPA, but only when D2 receptors were not protected by a previous injection of sulpiride (a D2 antagonist). Taken together, these results are consistent with the presence of large reserves of D1 and D2 receptors in the preweanling rat pup.  相似文献   

20.
The effects of chronic administration of antidepressant drugs (21-22 days s.c. via osmotic mini-pumps) on the behavioural responses of male Sprague-Dawley rats to (-)-quinpirole hydrochloride (0.05 mg kg-1 s.c., 5 min) and (+/-)-SKF 38393 hydrochloride (10 mg kg-1 s.c., 5 min) were investigated. Desipramine hydrochloride (10 mg kg-1 per day), phenelzine sulphate (10 mg kg-1 per day) and clorgyline hydrochloride (1 mg kg-1 per day) attenuated the suppression of locomotor activity induced by quinpirole, a dopamine D2-like receptor agonist, while clomipramine hydrochloride (10 mg kg-1 per day) was without effect. Yawning elicited by quinpirole was absent in phenelzine- and clorgyline-treated rats, but unaffected in rats treated chronically with desipramine and clomipramine. SKF 38393, a dopamine D1-like receptor agonist, significantly increased locomotor activity and time spent grooming in control animals. There were no significant effects of antidepressants on the behavioural responses to SKF 38393.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号