首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An anti-reflection (AR) coating was deposited on the surface of flat panel displays to increase the efficiency of the light emission. The use of low reflective index material can decrease the thickness of the optical coating layer. In this work, low refractive index SiOCF:H films were deposited on P-type (100) Si and glass substrates by the plasma enhanced chemical vapor deposition (PECVD) method using an SiH4, CF4 and N2O gas mixture. The refractive index of the SiOCF:H film continuously decreased with increasing deposition temperature and rf power, exhibiting a minimum value of 1.3854. As the rf power was increased, the fluorine content of the film increased linearly to 5.41% at an rf power of 180 W. The rms surface roughness decreased to 1.0 nm with increasing rf power, with the optimum conditions being observed for the film deposited at an rf power of 140 W.  相似文献   

2.
Silicon oxynitride (SiON) layer and SiO2 buffer layer were deposited on silicon wafers by PECVD technique using SiH4, N2O and N2. The refractive index of SiON films measured at a wavelength of 1552 nm using a prism coupler, could be continuously varied from 1.4480 to 1.4508. Optical planar waveguides with a thickness of 6 μm and a refractive index contrast (Δn) of 0.36% have been obtained. In addition, etching experiments were performed using ICP dry etching equipment on thick SiON films grown on Si substrates covered with a thick SiO2 buffer layer. In order to measure optical properties, a polarization maintaining single-mode fiber was used for the input and a microscope objective for the output at 1.55 μ m. A low-loss and low propagation SiON-based waveguide was fabricated with easily adjustable refractive index of core layer.  相似文献   

3.
We investigate the influence of the ambient gas during thermal annealing on the photoluminescence (PL) properties of europium compound thin films on Si substrates. The films were deposited by radio-frequency magnetron sputtering and subsequently annealed in N2 or O2 ambient gas by rapid thermal annealing (RTA). The results of X-ray diffraction indicate that the resulting europium compound annealed in N2 ambient have several silicate phases such as EuSiO3 and Eu2SiO4 compared to those annealed in O2 ambient. The spectral results revealed that a broad luminescence associated with Eu2+ ions, with a maximum intensity at 600 nm and a FWHM of 110 nm, was observed from the thin film annealed at 1000 °C in N2 ambient. However, a series of narrow PL spectra from Eu3+ ions were observed from the film annealed in O2 ambient.  相似文献   

4.
《Integrated ferroelectrics》2013,141(1):1475-1482
Ferroelectric PZT thin films were deposited by liquid delivery MOCVD using a cocktail solution. The cocktail solution consisted of Pb(METHD)2, Zr(METHD)4 and Ti(MPD)(METHD)2 diluted with ethylcyclohexane. The films deposited on Pt/Ti/SiO2/Si at a substrate temperature of 500°C consisted of PZT, PbO and PbPtx, and showed poor properties. However, after annealing at 450°C in air for thirty minutes, the PbPtx phase disappeared while the volume of the PbO phase increased. The hysteresis properties were also improved by annealing at 450°C. After annealing at 600°C in air for thirty minutes, the PbPtx and the PbO phases disappeared perfectly and the PZT thin films showed good hysteresis properties with the remanent polarization of 30 μC/cm2 and the coercive field of 88 kV/cm.  相似文献   

5.
Abstract

In this study, integration of an hydrogen barrier into a FeRAM process flow is investigated. It is reported in the literature that ferroelectric properties can be maintained after hydrogen annealing by using IrOx as a top electrode [16][17][18]. Advantage of materials like IrOx is less catalytic activity compared to Pt. However, we found that IrOx is not a promising candidate for top electrode barrier. (Pt)/IrOx/SBT/Pt capacitors are prone to shorting or exhibit high leakage. IrOx films are very easily reduced by reducing ambient which will result in peeling off. Also, IrOx films tend to oxidize Ti or TiN layers immediately. Therefore, other barrier materials or layer sequences like Ir/IrOx have to be considered.

For protection of the entire capacitor an Encapsulation Barrier Layer (EBL) is required. In this study, LPCVD SiN is used. LPCVD SiN is a standard material in CMOS technology. Production tools are available and it is well known as hydrogen barrier. By modifying the deposition process and using a novel process sequence, no visual damage of the capacitors after SiN-deposition and FGA is seen. Also, no degradation of electrical properties after capacitor formation as well as after SiN-deposition and FGA is observed. However, after metal 1 and metal 2 processing, 2Pr values at 1.8V are reduced from 12μC/cm2to 2μC/cm2. Polarization at 5.0V is not affected.  相似文献   

6.
ZnNb2O6-TiO2 mixture thin films with multilayer structures were fabricated via a sol-gel spin coating process. TiO2 layers were deposited on the pre-crystallized ZnNb2O6 layers in order to suppress the formation of the ixiolite phase which always forms in the bulk system. The phase constitution of the thin films, confirmed by X-ray diffraction (XRD), could be controlled by the annealing temperatures, which, in turn, influenced the dielectric properties of the thin films. TiO2 layers crystallized as the anatase phase and then transformed to the rutile phase at temperatures higher than 725C. Dielectric constants of the mixture thin films, measured at 1 MHz with an MIM (metal-insulator-metal) structure, increased from 27 to 41 with dielectric losses below 0.005 as the annealing temperature increased from 700C to 900C. The increase in the dielectric constants was understood to originate from the increasing amounts of the rutile phase. Temperature coefficients of capacitance (TCC) were also measured between 25C and 125C, which showed a decreasing manner from positive values to negative values with increasing annealing temperatures. When annealed at 850C, the TCC of the thin films could be tuned to be approximately 0 ppm/oC with dielectric constant and dielectric loss of 36 and 0.002, respectively.  相似文献   

7.
Ultra-thin (∼4.0 nm) HfO2 films were fabricated by plasma oxidation of sputtered metallic Hf films with post low temperature annealing. Advantage of this fabrication process is that the pre-deposition of Hf metal can suppress the formation of interfacial layer between HfO2 film and Si substrate. The as-deposited HfO2 films were subsequently treated by rapid thermal annealing at different temperatures in N2 to investigate the effects of thermal annealing on the physical and electrical properties of HfO2 film. A SiO2-rich interface layer was observed after higher temperature rapid thermal annealing and the phase change of HfO2 film from amorphous into crystalline occurred at about 700C. As a result of higher temperature annealing, effective dielectric constant and leakage current were significantly influenced by the formation of interface layer and the crystallization of HfO2 film.  相似文献   

8.
Er3+/Pr3+ co-doped soda-lime glass thin films have been fabricated using RF magnetron sputtering method and their structural and optical properties have been studied. Deposition rate, crystallinity, and composition of glass thin films were investigated by scanning electron microscopy, transmission electron microscopy, and electron probe micro area analysis. Refractive index, birefringence and binding characteristics have been investigated using a prism coupler and X-ray photoelectron spectroscopy. Er3+/Pr3+ co-doped soda lime glass thin films were prepared by changing substrate temperature (room temp. ∼550C), RF power (90 W–130 W), and Ar/O2 gas flow ratio at processing pressure of 4 mTorr. Glass thin films could be obtained at the optimized processing condition at 350C, RF power of 130 W, and gas flow of Ar:O2 = 40:0 with maximum deposition rate of 1.6 μm/h. Refractive index and birefringence increased from 1.5614 to 1.5838 and from 0.000154 to 0.000552, respectively, as the content of Pr3+ increased. Binding energy of Pr3d also increased as the content of Pr3+ increased.  相似文献   

9.
Polycrystalline Pb(Zr0.5Ti0.5)O3 thin films with good ferroelectric properties have been prepared by metallo-organic decomposition (MOD) process, using acetate-based precursors, and followed by two different kinds of annealing process, independently, including oven annealing and rapid thermal annealing (RTA). The experimental procedures were described for the films deposited on Pt-coated silicon substrates. There were distinct differences between oven annealing and RTA process, in terms of structures, morphologies, and electrical properties of the films. The films with RTA process showed denser and smoother surface, finer grain sizes, and much higher dielectric constant (1200–1400), remnant polarization of 30–35 μC/cm2 and lower coercive field of 65–85 kv/cm in the entire annealing temperature range of this study. At an annealing temperature of 550°C, RTA processed films showed identical XRD patterns of perovskite phase and clear ferroelectricity; however, it was not possible to realize the perovskite structure and ferroelectricity in the films oven-annealed at that temperature. These acetate-derived PZT films with RTA process were reproducible, showed high quality in uniformity and homogeneity.  相似文献   

10.
《Integrated ferroelectrics》2013,141(1):1233-1240
(100) textured Pb(Zr0.48Ti0.52)O3 (PZT) films were prepared on silicon substrates by MOD process and laser lift-off technique. Textured PZT films were first grown on (001) Sapphire substrate, using Ba(Mg1/3Ta2/3)O3 (BMT) materials as buffer layer. The (100) textured PZT/BMT/Sapphire films were attached to Si substrate using a transient-liquid-phase Pd-In bonding process, and then were separated from Sapphire substrates by a laser lift-off process, in which, a 38 ns pulse from excimer laser (248 nm) at 600 mJ/cm2 fluence melted BMT buffer layer, expelling the Sapphire. The crystallinity of the surface of films was further improved by laser annealing. X-ray diffraction analysis of the PZT films showed that the crystallographic structure of films is maintained during laser lift-off process. Electrical testing of the films after laser lift-off process followed by laser annealing demonstrated that the ferroelectric properties are retained for the transferred films (Pr = 9μ C/cm2 and Ec = 74 kV/cm).  相似文献   

11.
This study examined the effect of the hydrogen ratio on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt% ZnO, 2 wt% Al2O3). Various AZO films on glass were prepared by changing the H2/(Ar?+?H2) ratio at room temperature. The AZO/H films showed a lower resistivity and a higher carrier concentration and mobility than the AZO films. However, the resistivity and mobility of the AZO/H films increased and decreased with increasing H2 flow ratio, respectively. As a result, the AZO/H films grown with 2% H2 addition showed excellent electrical properties with a resistivity of 4.98?×?104 Ωcm. The UV-measurements showed that the optical transmission of the AZO/H films was >85% in the visible range with a wide optical band gap. In addition, the effect of H2 flow ratio on the structure and composition of hydrogenated AZO thin films have also been studied.  相似文献   

12.
Films of (1−x)Pb(Zn1/3Nb2/3)O3-xPb(Zr0.4Ti0.6) O3 (x = 0.6, 40PZN-60PZT) were deposited on Pt/TiO2/ SiO2/Si substrate through spin coating. Using a combination of homogeneous precursor solution preparation and two-step pyrolysis process, we were able to obtain the 40PZN-60PZT thin films of perovskite phase virtually without pyrochlore phase precipitation after annealing above 650C. But since annealing done at the high temperatures for extended time can cause diffusion of Pt, TiO2 and Si, and precipitation of nonstoichiometric PbO, we adopted 2-step annealing method to circumvent these problems. The 2-step annealed films show dense microstructure than the 1-step films annealed at higher temperature. Furthermore, the root-mean-square surface roughness of 220 nm thick films which are annealed at 720C for 1 min and then annealed at 650C for 5 min was found to be 3.9 nm by atomic force microscopy as compared to the 12 nm surface roughness of the film annealed only at 720C for 5 min. The electrical properties of 2-step annealed films are virtually same and those of the 1-step annealed films annealed at high temperature. The film 2-step annealed at 720C for brief 1 min and with subsequent annealing at 650C for 5 min showed a saturated hysteresis loop at an applied voltage of 5 V with remanent polarization (P r) and coercive voltage (V c) of 25.3 μC/cm2 and 0.66 V respectively. The leakage current density was lower than 10−5A/cm2 at an applied voltage of 5 V.  相似文献   

13.
This paper investigates the influence of gas flow ratio in the preparation of submicron‐thick silicon nitride (SiNx) films on their elastic properties. SiNx films with a thickness ranging from 0.14 to 0.69 µm were deposited by plasma‐enhanced chemical vapor deposition (PE‐CVD) onto 10‐µm‐thick single‐crystal silicon (SCS) specimens by changing the gas flow ratio of monosilane (SiH4) to ammonia (NH3) to nitrogen (N2). A uniaxial tensile tester operated under an atomic force microscope (AFM) characterized the Young's modulus of SiNx films and the fracture strength of SiNx/SCS laminated specimens. The Young's modulus of SiNx films ranged from 99.5 to 144.3 GPa, which increased with the gas flow ratio but was independent of the film thickness. Nano‐indentation tests were also carried out to examine the Poisson's ratio of SiNx films in addition to the tensile tests. The Poisson's ratio was found to be 0.19 to 0.27, on average. Auger spectroscopy revealed that an increase of the atomic content ratio of nitrogen (N) to silicon (Si) in SiNx films yielded higher elastic constants of the films. © 2008 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
Abstract

PZT thin films with a uniform distribution of components were prepared by plasma enhanced chemical vapor deposition (PECVD) using Pb(C2H5)4, Z (O-i-C4H9)4, Ti(O-i-C3H7)4, and oxygen. The crystallization of films was occure after annealing in the temperature range between 450 and 550°C under O2 ambient for 1 hr. The significant change of Pb concentration in PECVD PZT thin films was not observed in the relation to annealing temperature and time. The dielectric constant PECVD PZT thin films increased with the Ti content, showed the maximum value in the vicinity of morphotropic phase boundary (MPB) composition of PZT material, and decreased with the Ti content. The leakage current density of PZT (65/35) thin film of 180 nm in thickness was 3·37 × 10?7 A/cm2 at the applied voltage of 3 V. Remanent polarization increased with increasing of Zr content in the film and coercive field was nearly independent of the composition. The typical values of electrical properties were εr = 570, Ec = 90 kV/cm, and Pr = 19 μC/cm2 in the PECVD PZT (54/46) thin film of 220 nm in thickness.  相似文献   

15.
We fabricated MFIS (metal-ferroelectric-insulator-semiconductor) diodes with ((Bi,La)4Ti3O12: BLT) films and lanthanum silicate (La2SiO5: LSO)-added BLT films formed on LaAlO3/Si(100) structures. LaAlO3 films were prepared by an MBD (molecular beam deposition) method. After the film deposition, they were subjected to ex site N2 annealing in a rapid thermal annealing (RTA) furnace at 800°C for 1 min. BLT films and LSO-added BLT films were deposited on these LaAlO3/Si structures using a sol-gel technique. The memory windows of BLT and LSO-added BLT films were 3.0 V and 2.1 V, respectively. It was found from the current density-voltage (I-V) characteristics that the insulation property of the LSO-added BLT film was superior to that of the BLT film. We conclude from these results that LaAlO3 is an excellent candidate of a buffer layer for forming ferroelectric-gate FETs and that the LSO-added BLT film is suitable for low voltage operation of the FETs.  相似文献   

16.
YBa2Cu3Ox (Y123) superconducting films were fabricated on Cu substrates using a simple screen-printing method, from Cu-free powders (Y2O3 and BaCO3). In the process, CuO, which causes superconducting properties of Y123 films to deteriorate, was formed on the film surface. By varying the atomic ratio of Y to Ba (Y:Ba = 1:1∼1:4), the ratio needed to prevent CuO formation was found for the film surface that had been heat-treated at 980C for 17 s. The film, with the ratio of Y to Ba (Y:Ba = 1:1), is reheat-treated at 930C for 9 min 30 s to form a superconducting Y123 phase. It was possible to prevent CuO formation by controlling the ratio of Cu-free powders in the mixture and to fabricate YBCO superconductors on Cu substrates using a two-step heat-treatment.  相似文献   

17.
Bi4Ti3O12 thin films are deposited on ITO/glass and Pt/Ti/Si(100) substrates by R.F. magnetron sputtering at room temperature. The films are then heated by a rapid thermal annealing (RTA) process conducted in oxygen atmosphere at temperatures ranging from 550–700C. X-ray diffraction examination reveals that the crystalinity of the films grown on Pt/Ti/Si is better than that of the films grown on ITO/glass under the same fabrication conditions. SEM observation shows that the films grown on Pt/Ti/Si are denser than those grown on ITO/glass substrates. Interactive diffusion between the Bi4Ti3O12 film and the ITO film increases with the increase of annealing temperature. The optical transmittance of the thin film annealed at 650C is found to be almost 100% when the effect of the ITO film is excluded. The relative dielectric constants, leakage currents and polarization characteristics of the two films are compared and discussed.  相似文献   

18.
We studied the effects of rapid thermal annealing in different ambients on the structural, electrical and optical properties of the sol-gel derived ZnO thin films. All the films after annealing showed highly degree of (002) oriented in the X-ray diffractometry (XRD) patterns. The effects of annealing ambients on electrical properties of the films were studied. Carrier concentration, resistivity and mobility were found to be distinguished after annealed in different ambients. The sample with the lowest resistivity of 0.095 ??·cm and the largest mobility of 105.1 cm2/v·s was achieved after annealing in vacuum. XPS results indicated that more oxygen vacancies existed on the ZnO surface when annealed in vacuum than that in O2.  相似文献   

19.
The local structures of Hf-O-N thin films were analyzed using an extended X-ray absorption fine structure (EXAFS) study on Hf L III-edge and first-principles calculations. Depending on their composition and atomic configurations, Hf4O8 (CN: 7.0), Hf4O5N2 (CN: 6.25) and Hf4O2N4(CN: 5.5) were suggested as the local structures of Hf-O-N thin films. The optical band gaps of Hf-O-N thin films were compared with the calculated band gap. And to investigate the optical absorption, the effects of film compositions on the valence bands of Hf-O-N thin films were analyzed by comparing the experimental valence band with the valence band.  相似文献   

20.
SrBi2Ta2O9 thin films were successfully prepared at a low annealing temperature using a low-oxygen-concentration annealing technique. It was possible to obtain a single perovskite phase at 600 °C in 0.7% oxygen concentration and fluorite phase was observed at 600 °C in 100% oxygen. In addition, the SrBi2Ta2O9 thin films annealed at 650 °C in 0.7% oxygen were well crystallized and composed of dense crystal grains with a size of 70 nm. The remanent polarization and leakage current density of the SrBi2Ta2O9 thin film obtained using this new technique were 7 μC/cm2 and 3 × 10−9 A/cm2 (at 5 V), respectively. The final remanent polarization after 109 switching cycles was nearly constant. © 1999 Scripta Technica, Electr Eng Jpn, 129(4): 1–6, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号