共查询到18条相似文献,搜索用时 62 毫秒
1.
以行星齿轮箱为研究对象,针对经验模态分解(EMD)存在模态混叠、易出现端点效应等缺陷,导致难以很好地解决行星齿轮箱振动信号耦合及非线性特征的提取问题。本文以自适应噪声完备总体经验模态分解(ANCEEMD)为信号处理方法,引入样本熵进行特征提取,应用群智能融合算法优化的神经网络模型对行星齿轮箱故障进行识别和诊断。对于混合蛙跳算法(SFLA)与粒子群优化算法(PSO),实施“两层优化和内外循环”的融合机制,提出SFLA-PSO融合算法。开展了行星齿轮模拟故障实验,采集了行星齿轮箱的多种故障的振动信号,进行了样本熵特征提取,应用SFLA-PSO融合算法优化了BP神经网络模型,对行星齿轮箱故障进行识别诊断。结果表明:基于ANCEEMD样本熵特征提取的SFLA-PSO-BP诊断模型较PSO-BP和BP在行星齿轮箱故障诊断中的准确率分别提高了5%、15%。 相似文献
2.
针对齿轮箱轴承信号非平稳性及其故障特征难以提取的问题,提出一种自适应白噪声平均总体经验模态分解(CEEMDAN)能量熵和马氏距离相结合的故障诊断方法。首先采用CEEMDAN方法对非平稳的轴承故障信号进行分解,获得若干阶表征信号特性的固有模态函数(IMF)分量;然后计算各IMF分量的自相关函数和相关系数,以滤除信号内的噪声干扰和对故障特征不敏感的IMF分量;最后计算各敏感故障特征分量的能量熵,将其作为特征参数形成状态特征向量,并使用马氏距离判别方法对轴承的工作状态和故障类型进行诊断。通过对实测不同工况以及不同故障程度的齿轮箱轴承信号的分析,证明了所提方法的有效性。 相似文献
3.
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋势项和零点漂移后,通过CEEMDAN对供输弹信号进行分解,得出模态分量(IMF);然后依据相关系数和峭度准则这两个标准来选取符合标准的IMF分量,提取这些分量的分布熵(DE)作为特征;最后用VNWOA-LSSVM诊断模型,输入供输弹系统3种不同工况下的振动信号特征进行故障诊断,并且还对比了LSSVM、PSO-LSSVM、GA-LSSVM和WOA-LSSVM等方法对故障的识别率。实验结果表明:这些方法中经VNWOA优化后的LSSVM的识别率最高,高达94.03%。 相似文献
4.
针对往复压缩机振动加速度信号的非线性、非平稳等特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和精细复合多尺度散布熵(RCMDE)的往复压缩机轴承故障特征提取方法。采用CEEMDAN方法对信号进行分解时,通过不同的参数组合,可得到不同的IMF分量;计算不同参数条件下重构后的信号的峭度值,选用峭度值最大的一组参数重新对信号进行CEEMDAN分解,并进行信号重构。对重构后的信号进行RCMDE分析,提取故障特征向量,并利用支持向量机(SVM)进行分类识别。将优选参数的CEEMDAN分解方法和原CEEMDAN分解方法进行对比,结果表明:优选参数的CEEMDAN分解方法能更好地提取往复压缩机周期冲击性信号,有利于提高故障诊断的精确度。 相似文献
5.
噪声情况下精确地对齿轮箱进行故障诊断是齿轮箱故障诊断的难题。为了解决该难题,采取自适应小波对自适应噪声完全集合经验模态分解(CEEMDAN)分量进行分解降噪与重组,并提出卷积神经网络(CNN)结合Inception模块的一维卷积神经网络(BICNN)提取重构信号的基本数字特征,同时使用长短期记忆提取BICNN所提取到的特征之间的相关性特征,对齿轮箱进行故障诊断研究。诊断结果表明:所提出的方法具有较高的抗噪声能力,并且齿轮箱在受到-4 dB噪声干扰的情况下,所提出的方法仍然可以获得99.63%的训练精度。 相似文献
6.
针对研究振动信号分析识别轴承状态的方法,在实践应用中受到各种噪声的影响很难达到准确识别预期目标的效果,提出了基于VMD能量熵特征与PNN神经网络结合的分类滚动轴承故障状态的方法。首先,通过运用变分模态分解(VMD)的信号预处理方法,实现振动信号的VMD降噪,同时利用集合经验模态分解(EEMD)对仿真信号进行对比两种方法的分解效果;然后,通过VMD能量熵和时域特征组成特征向量。最后,特征向量导入概率神经网络模型中准确识别滚动轴承故障状态。结果表明,该方法能将非平稳振动信号分解有效降噪且抑制模态混叠现象,同时能有效识别故障状态,对于在线监测机床健康状态领域的发展有重大的意义。 相似文献
7.
为解决轴承故障诊断中故障分类模型参数多且泛化性能弱、故障识别率低、识别速度慢的问题,设计一种基于深度学习模型ECA-ResNet、完全噪声辅助聚合经验模态分解与麻雀搜索算法优化的支持向量机(SSA-SVM)的故障诊断方法。通过ECA-ResNet对轴承信号进行建模以提取频域故障特征;将频域特征与CEEMDAN提取的能量熵以及传统信号的时域特征共同构成特征矩阵;通过SSA-SVM进行故障类型识别。结果表明:与传统故障特征提取方式相比,所提出的轴承故障诊断方法能得到良好的诊断效果,轴承故障识别率和分类速度较高。 相似文献
8.
9.
声音信号在收集时具有非接触测量的优势,但容易受到周围环境噪声的干扰而导致信噪比较低,不利于特征信息的获取。为从滚动轴承声音数据中提炼出有效的特征信息,并实现故障的精准识别,提出一种基于自适应噪声完全集成经验模态分解(CEEMDAN)和层次波动离散熵(HFDE)的声音信号故障诊断策略。在该策略中,CEEMDAN缓解了集成经验模态分解(EEMD)的模态混淆缺陷;针对传统多尺度波动离散熵(MFDE)无法考虑时间序列的高频信息的缺陷,提出一种基于层次化处理的层次波动离散熵非线性动力学指标。将所提策略用于滚动轴承的故障识别,能够检测出不同故障状态下的声音数据。通过数值模拟和滚动轴承实验数据分析,将所提方法与CEEMDAN-MFDE、EEMD-HFDE、EEMD-MFDE、HFDE和MFDE进行对比。结果表明:所提方法达到了100%的识别准确率,多次实验的平均识别准确率也达到了99.5%,均高于对比方法,从而验证了该策略的有效性和优越性。 相似文献
10.
针对刀具退化特征提取困难和传统时空网络模型参数多等问题,提出了基于自适应噪声完备经验模态分解(CEEMDAN)和改进轻量化时空网络(BiLSTM-SN-ECA)的刀具磨损监测模型。首先,将刀具振动信号经CEEMADAN分解得到若干模态分量,将模态分量与振动信号结合,构造特征矩阵;其次,利用ECA改进ShuffleNetv2基本单元,并优化ShuffleNetv2整体结构,构造BiLSTM-SN-ECA网络模型;最后,将特征矩阵输入模型进行特征学习与磨损预测。所提方法预测值的平均绝对误差和均方根误差分别为1.246μm和2.065μm,结果表明该方法在减少传统时空网络模型参数量与训练时间的同时,提高了预测准确度。 相似文献
11.
针对故障行星齿轮箱的扭振信号具有非稳定、非线性的特点,提出基于H-P滤波与变分模态分解(Variational Mode Decomposition,VMD)相结合的行星齿轮故障时域特征分离方法。H-P滤波基于竞争性趋势估计算法,能保存扭振信号中的分段线性特征。滤波后的信号内容丰富,VMD能将这些内容分解在不同的模态分量中,故障冲击特征突出。通过分析不同负载下的扭振信号,证实该方法能够提取周期脉冲,诊断出行星齿轮故障。对于实际工程应用中的复杂信号,该方法提供了有效解决途径,具有一定的工程应用价值。 相似文献
12.
13.
为了研究行星齿轮箱齿面磨损全生命周期实验的退化过程,使用了可以抑制高斯噪声和对信号中产生的频率耦合进行解耦的双谱方法去进行故障特征提取,提出了两个基于双谱的特征指标,双谱熵以及非高斯强度,并通过特征指标评价方法去检验其指标性能。结果表明基于双谱熵具有良好的指标性能,而且对于行星齿轮箱齿面磨损的早期微弱故障十分敏感,适用于行星齿轮箱齿面磨损的故障诊断。 相似文献
14.
随着现代机械装备的复杂化,传统的故障诊断方法难以满足表征设备间的复杂映射关系,且在如今大数据背景下面临着维数灾难的问题。文章结合深度置信网络以及梯度优化算法提出了一种基于梯度优化深度置信网络(Adam-DBN),通过数据验证选取最优梯度优化算法对深度置信网络的的梯度算法进行调优。搭建模拟实际工况的行星齿轮箱实验台,通过实验台采集所得数据构成数据集对方法进行验证。实验表明文中提出的方法能够有效提高DBN网络的收敛速度与训练精度,同时具有较高的故障识别准确率。 相似文献
15.
杨洪涛 《组合机床与自动化加工技术》2020,(1):79-82,88
为了准确诊断出轴承故障,提出了样本熵改进小波包阈值去噪算法的轴承故障诊断方法。分析了样本熵与噪声大小、数据长度、信号固有特征的关系,得出了样本熵可以很好表征噪声大小、与数据长度、信号固有特征相关性极小的结论。使用样本熵从三个方面改进了小波包阈值去噪算法:提出了自适应阈值函数,使阈值函数随噪声分布情况进行自适应调整;以噪声信号样本熵值最大为依据,提出了最优阈值估计方法,使阈值随噪声大小自适应调整;以相邻分解层数的样本熵均值差值为依据,提出了分解层数确定方法。将样本熵改进小波包阈值去噪算法应用于轴承故障信号去噪中,去噪信号功率谱中轴承转动频率及倍频、外圈故障特征频率及倍频、两者的调制频率显露明显,能够明确判处出轴承为外圈故障,体现了极好的去噪效果。 相似文献
16.
为了诊断出强噪声干扰下的齿轮故障,提出时域同步平均技术与AR模型相结合的齿轮故障诊断方法。用TSA技术提取强噪声干扰下的齿轮特征信号,用FPE准则确定AR模型的阶次,利用AR模型参数算法确定齿轮正常状态下参数向量及参数容差范围,然后在模型阶次不变的情况下分析齿轮故障信号的AR模型参数,对比建立的参数容差范围,从而诊断齿轮故障。将该方法对实际试验信号进行分析,对提取到的8组正常齿轮特征信号数据建立AR模型,优化AR模型的最佳阶次为5阶,由AR模型参数算法得到了正常齿轮的AR模型参数向量及参数容差范围,再用同样阶数为5阶的AR模型分析了故障状态下的几组模型参数,对比建立的正常AR模型参数容差范围,从而诊断出齿轮故障。 相似文献
17.
针对齿轮实际工况复杂、故障特征难以提取的问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)复合熵值法的故障诊断方法.首先,采用VMD方法对不同工况下齿轮振动信号进行分解,并对分解过程中关键参数的选择进行了研究;其次,根据频域互相关系数准则筛选出可有效表征齿轮状态特征的... 相似文献
18.
全向足球机器人运动系统故障诊断研究对于增强其鲁棒性具有重要意义。在分析全向足球机器人运动系统故障类型的基础上,提出了基于概率神经网络的全向足球机器人运动系统故障诊断方法。在该方法中,采用卡尔曼滤波器实时处理全向足球机器人运动速度的残差信号,并通过概率神经网络对其故障进行诊断。给出的仿真实例证明了该方法的有效性。 相似文献