首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
DNA methylation is important for plant growth, development, and stress response. To understand DNA methylation dynamics in maize roots under water stress (WS), we reanalyzed DNA methylation sequencing data to profile DNA methylation and the gene expression landscape of two inbred lines with different drought sensitivities, as well as two of their derived recombination inbred lines (RILs). Combined with genotyping-by-sequencing, we found that the inheritance pattern of DNA methylation between RILs and parental lines was sequence-dependent. Increased DNA methylation levels were observed under WS and the methylome of drought-tolerant inbred lines were much more stable than that of the drought-sensitive inbred lines. Distinctive differentially methylated genes were found among diverse genetic backgrounds, suggesting that inbred lines with different drought sensitivities may have responded to stress in varying ways. Gene body DNA methylation showed a negative correlation with gene expression but a positive correlation with exon splicing events. Furthermore, a positive correlation of a varying extent was observed between small interfering RNA (siRNA) and DNA methylation, which at different genic regions. The response of siRNAs under WS was consistent with the differential DNA methylation. Taken together, our data can be useful in deciphering the roles of DNA methylation in plant drought-tolerance variations and in emphasizing its function in alternative splicing.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号