共查询到19条相似文献,搜索用时 62 毫秒
1.
为提高油浸式电力变压器故障诊断的准确率,提出了 一种将AO-PNN模型与油中溶解气体分析法(DGA)相结合的故障诊断方法.该方法引入天鹰优化算法对概率神经网络进行优化,将DGA比值输入模型最终得到变压器的故障诊断结果.仿真结果表明,与其他常用的机器学习模型相比,提出的模型有更高的准确率,可有效运用到变压器故障诊断领域. 相似文献
2.
3.
4.
电力变压器是电力系统中最重要的电气设备之一。变压器油中溶解气体分析是变压器故障诊断的重要手段。故障征兆和故障类型之间存在复杂的非线性关系决定了传统的方法难以完全满足工程应用的要求。本研究提出一种改进面积广义灰色关联度来分析序列之间的相似性与相近性,以期能有效诊断变压器的故障类型。 相似文献
5.
《高压电器》2016,(2):57-61
为了提高变压器故障诊断的准确率,提出一种基于量子粒子群优化BP神经网络(quantum particle swarm optimized BP neural network,QPSO-BP)的故障诊断模型。在该算法中,用量子位的概率幅表示种群中各粒子的当前位置,用量子旋转门实现粒子位置的移动,用量子非门进行变异操作,以获取BP神经网络的权、阈值优化参数,最终实现了变压器故障诊断模型的构建。对故障DGA样本的诊断实例表明,与粒子群优化BP网络(particle swarm optimized BP neural network,PSO-BP)法、BPNN法以及IEC三比值法相比,QPSO-BP算法具有更高的诊断正确率,从而实现了变压器故障模式的有效识别。 相似文献
6.
7.
为进一步提高变压器故障诊断效果,提出了一种基于加权综合损失优化深度学习和油中溶解气体分析(dissolved gas-in-oil analysis,DGA)的变压器故障诊断方法。该方法以DGA特征量为输入,以Softmax层各故障状态概率分布为输出,基于堆栈稀疏自编码深度学习理论构建了变压器故障诊断模型。针对常规交叉熵损失函数下,变压器故障诊断效果偏低,训练样本不平衡分布影响故障诊断水平的问题,采用加权综合损失函数对深度学习模型进行优化。案例分析结果表明:相比传统方法,本文方法可削弱训练样本不对称对变压器故障诊断的不利影响并提高变压器故障诊断水平,各训练集下,本文方法故障诊断准确率可保持在90%以上。 相似文献
8.
变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。 相似文献
9.
10.
根据灰色系统理论,把电力变压器油中溶解气体含量视为灰色量,利用有限的故障数据,按照灰色预测的方法,对数值进行初值化和一次累加生成等处理,建立灰色预测模型群即GM(1,1)模型,对电力变压器运行时间内的状态进行精密诊断和故障预报。 相似文献
11.
为提高变压器故障诊断的准确率及可靠性,提出了基于MPC(modification of the PC,简称MPC)算法优化贝叶斯网络的变压器故障诊断方法,对变压器故障诊断技术进行了研究。首先,根据油中溶解气体分析,采用无编码比值法提取油浸式变压器的9维故障特征,并对数据样本进行归一化处理;其次,以归一化的训练样本作为输入建立基于贝叶斯网络的故障诊断模型,采用MPC算法对贝叶斯网络模型进行优化;最后,利用测试样本对故障诊断模型进行测试。为了证明所提出方法的优越性,将本文研究方法与现有故障诊断方法进行了对比。结果表明,所提出方法的诊断正确率更高,诊断效果更好。 相似文献
12.
13.
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。
相似文献14.
15.
16.
17.
油中溶解气体分析对变压器故障预警及诊断具有重要意义。针对油中溶解气体特征量种类众多、故障关联特征分析不足等问题,文中以油浸式变压器为研究对象,提出了基于油中溶解气体特征量筛选的变压器故障诊断方法。首先,对油中溶解气体的原始特征量进行特征衍生,通过随机森林(random forest, RF)计算特征量对故障诊断的重要度,筛选得到最佳特征组合。其次,采用树结构概率密度估计(tree-structured parzen estimator, TPE)实现RF模型的参数寻优,并形成TPE-RF诊断模型。同时,结合多种评价指标,证明所提方法能够对变压器作出准确的故障诊断。最后,提出TreeSAHP模型分析特征量对各故障的重要度,优选出各故障关联的主要特征量,并根据变压器运行案例,探讨了该方法在电力行业现场应用中的适用性,验证了该方法的有效性。 相似文献
18.
基于模糊三比值法的电力变压器绝缘故障诊断研究 总被引:1,自引:0,他引:1
针对常用于充油变压器绝缘故障诊断的三比值法的局限性,提出了模糊三比值故障诊断法。仿真分析表明,模糊三比值法判断故障类型的准确率更高。 相似文献
19.
对变压器的常见故障及其基于变压器油中特征气体组分的故障诊断方法进行归类,分析了在不同故障原因下变压器油中主要特征气体组分,阐述了国内外变压器油中溶解气体在线监测技术的研究现状和发展趋势. 相似文献