首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Advanced Powder Technology》2021,32(10):3672-3688
In this work, Z-scheme Ag2S/Bi2O3 composites were fabricated through the precipitation of Ag2S nanoplates on the surface of Bi2O3 microrods. Consequently, Au nanoparticles were selectively deposited on the Ag2S nanoplates surface to obtain.Au-Ag2S/Bi2O3 composites using near-infrared light photodeposition method. The characterization results indicate that the Ag2S nanoplates were uniformly anchored on Bi2O3 surface, and Au nanoparticles were highly dispersed on the surface of Ag2S nanoplate instead of Bi2O3. Acid orange 7 (AO7), Rhodamine B (RhB) and Cr(VI) were chosen as model reactant for the evaluation of photocatalytic degradation and reduction activity of the products under simulated sunlight irradiation. After the decoration of Ag2S nanoplates, the photocatalytic activity of Ag2S/Bi2O3 is much higher than that of bare Bi2O3, and the optimal catalytic efficiency is achieved by 12 %Ag2S/Bi2O3 sample. More importantly, the photocatalytic activity of 12 %Ag2S/Bi2O3 sample can be further enhanced by the selective decoration Au nanoparticles on the Ag2S nanoplates. Among the ternary composites, 2Au-12 %Ag2S/Bi2O3 sample with the Au content of 2% exhibits highest catalytic efficiency for 60 min (AO7: 96%; RhB: 56%; Cr(VI): 65%). The possible mechanism for the improvement of the photocatalytic activity of Bi2O3 by Ag2S and Au decoration was proposed.  相似文献   

2.
Despite significant advancements in the improvement of heterogeneous photocatalysis towards water treatment, these processes still have some bottlenecks. In this research paper, oxygen vacancy rich-TiO2 was combined with Bi4O5Br2 nanoparticles (denoted as TiO2-OVs/Bi4O5Br2) by eco-friendly hydrothermal approach. The outcomes demonstrated that the photoactivity strongly depends on plenteous active sites, reinforced charge segregation, as well as striking visible-light absorption ability in TiO2-OVs/Bi4O5Br2 nanocomposite with n-n heterojunction. The photoactivity was found to follow the trend: TiO2-OVs/Bi4O5Br2 (30%) > TiO2-OVs > TiO2. Briefly, the removal efficiencies of RhB, MB, and fuchsine were 100%, 96.2%, and 84.7% using TiO2-OVs/Bi4O5Br2 (30%) in 120 min, while they were 25.1%, 20.0%, and 15.3% over the TiO2, respectively. Further, the boosted rate constant was observed for the photoreduction of Cr (VI) on the TiO2-OVs/Bi4O5Br2 (30%) nanocomposite, which was 19.4 and 7.8-folds more than the TiO2 and TiO2-OVs photocatalysts, respectively. The radical scavenging tests with different quenchers demonstrated that holes and superoxide anion radicals take part in the degradation reaction. Finally, by investigating the electrochemical properties, a mechanism was offered to describe the improved e/h+ pairs separation and migration. This research displayed that the design of n-n heterojunction using TiO2-OVs could be suitable for severely improving photocatalytic performance of TiO2 under visible light.  相似文献   

3.
Herein we have designed an excellent type of Z-scheme Ag2MoO4/Bi4Ti3O12 (AMO/BTO) heterojunction photocatalysts by immobilizing AMO particles onto rod-like BTO hierarchical architectures. The formation of Z-scheme AMO/BTO heterostructures was verified by various characterization techniques including XRD, UV–vis DR spectroscopy, SEM, TEM, XPS and FTIR spectroscopy. PL spectroscopy, photocurrent response and EIS analyses suggest that the creation of AMO/BTO heterojunctions is conducive to the efficient separation of photoexcited electron-hole pairs. The photocatalytic performances of the AMO/BTO composites were investigated by simulated-sunlight driving photodegradation of methylene blue (MB), tetrabromobisphenol A (TBBPA), tetracycline hydrochloride (TC), phenol and methyl orange (MO)/rhodamine B (RhB)/MB mixture solutions. It is demonstrated that the AMO/BTO heterojunction photocatalysts are endowed with excellent photodegradation performances much higher than that of bare AMO and BTO. For example, the photodegradation rate of MB by using 30 wt%AMO/BTO — confirmed to be the optimal composite sample — is about 17.0 and 14.7 times as high as that by using bare BTO and AMO, respectively. A Z-scheme electron transfer mechanism was proposed to elucidate the enhanced photodegradation performances of the AMO/BTO heterojunction photocatalysts.  相似文献   

4.
The ZnFe2O4/PANI/Ag2CO3 photocatalyst was synthesized by the co-precipitation method. The composition, morphology and optical properties of the synthesized photocatalyst were characterized. Compared with pure Ag2CO3, ZnFe2O4, PANI/Ag2CO3 and ZnFe2O4/Ag2CO3, ZnFe2O4/PANI/Ag2CO3 has the best photocatalytic ability of bisphenol A can reach 86.36% under 40 min of light, and it has a certain ability to be reused. At the same time, after 1 h of light, the degradation rate of Nitrobenzene can reach 90%. The reason for the increased catalytic ability of ZnFe2O4/PANI/Ag2CO3 can be attributed to the extended absorption capacity of the visible light region and the efficient separation of electron-hole pairs.  相似文献   

5.
CeO2/g-C3N4 heterojunction photocatalyst had been successfully fabricated through a one-step in-situ pyrolysis formation of 3D hollow CeO2 mesoporous nanospheres and 2D g-C3N4 nanosheets together with simultaneous removal of carbon sphere templates after heat treatment.The sample shows high catalytic performances for photocatalytic hydrogen generation and photocatalytic oxidation of Bisphe-nol A(BPA)under visible light irradiation,and the catalytic degradation route of BPA was suggested by the degradation products determined by GC-MS.The enhancing catalytic activity was attributed to the effective interfacial charge migration and separation.Finally,it was proposed that the CeO2/g-C3N4 het-erojunction photocatalyst could follow a more appropriate Z-scheme charge transfer mechanism,which was confirmed by the analysis of experiment and theoretical calculation results.  相似文献   

6.
Hierarchical nanostructures of bismuth sulfide (Bi2S3) have been synthesized by a facile hydrothermal method. The potentiality of Bi2S3 hierarchical nanostructures for the photocatalytic degradation of Rhodamine B (RhB), Methylene blue (MB) and the mixture of RhB-MB organic dyes have been demonstrated and compared with commercial TiO2 (Degussa P25) sample under visible light illumination. The degradation efficiency of Bi2S3 and Degussa P25 is found to be higher in the single as well as in the binary dye solution for MB degradation as compared to RhB degradation. Furthermore, the degradation rate of RhB and MB is enhanced by ~8 times and ~3 times in their binary solution as compared to that in single dye solution. Whereas, Bi2S3 has demonstrated ~14 times higher degradation rate of both RhB and MB in their binary solution than that of Degussa P25 for RhB and MB degradation in the binary solution under visible light exposure, respectively. Interestingly, Bi2S3 nanostructures has exhibited larger improvement in the degradation efficiency for RhB in its binary solution which is attributed to the faster separation of photogenerated charge carriers due to the proper alignments between the molecular orbits of dyes and band level positions of Bi2S3 in RhB-MB-Bi2S3 heterogenous system. The photocatalytic degradation study of colourless contaminants, p-chlorophenol (CP), p-nitrophenol (NP) and their mixture (CP-NP) is also investigated in the presence of Bi2S3 nanoflowers. Among the phenolic compounds, the degradation rate of NP is observed to be highest in the single solution. However, the degradation rate of both CP and NP is found to decrease in binary mixture solution in comparison to their individual solution. A possible mechanism for the enhanced photodegradation of RhB-MB dye mixture based on the active species trapping experiment has been proposed.  相似文献   

7.
《Advanced Powder Technology》2021,32(11):4330-4342
Development of plasmon-mediated catalysis emerged as an attractive alternative to propel chemical reactions. Novel plasmonic material in the form of Si@Au as core@shell nanostructure was experimentally synthesized with good colloidal stability. The Si@Au showed broad tunable light absorption spectra which benefits an effective light harvesting. The observed gold nanoparticles have narrow particle size distribution of 5 nm with lattice fringe of 1.23 Å corresponding to {3 1 1} gold lattice spacing. Whereas the silicon nanoparticles emitted photoluminescence under ultraviolet light irradiation, indicating successful alteration towards direct bandgap by quantum confinement effect in zero-dimensional structure. The Si@Au nanostructures were confirmed using high-resolution transmission electron microscopy and selected area electron diffraction, with the obtained localized surface plasmon resonance spectrum conformed to the simulated pattern corresponding to core@shell structure with a 5 nm-thin-shell Au layer. The vanishing photoluminescence in Si@Au nanostructure suggested suppression of the charge recombination, meaning that photogenerated charge carrier could be preferably used for photocatalytic reactions. The presence of novel Si@Au did not only show broad absorption spectra which is useful for effective light harvesting, but also acted as solid-state mediator driving the photocarrier transfer mode into Z-scheme system. As the result, an enhanced phenol degradation can be achieved, as indicated by 95% phenol degradation under visible light irradiation within 3 h.  相似文献   

8.
In this work, magnetic nanoparticles (MNPs) grafted with carboxylic acid (Fe3O4-COOH MNPs) were successfully prepared from incorporation of glutaric anhydride as a functional group on the surface of the ferrite NPs. The MNP was used as a template to induce the growth of ZIF-8 metal–organic framework (MOF) on its surface. The Fe3O4-COOH@ZIF-8 core-shell was incorporated with silver phosphate (Ag3PO4) and Ag nanoparticles (Ag NPs) to develop a visible light active Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 photocatalyst. The materials were characterized using a range of techniques. The photocatalytic activity was investigated systematically by degrading an organo-phosphorus pesticide, diazinon under visible light irradiation. Among synthesized samples, the Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 heterostructured system exhibited highest photocatalytic activity and improved stability compared to others for the degradation of diazinon under visible light. The superior activity and improved stability of this heterostructured photocatalyst was attributed to the synergistic effects from surface plasmon resonance (SPR) of Ag NPs and sequential energy transfer via Z-scheme mechanism, for effective separation of electron-hole pairs. Radical-trapping experiments demonstrate that holes (h+) and O2 are primary reactive species involved in photocatalytic oxidation process. Moreover, the Fe3O4-COOH@ZIF-8/Ag/Ag3PO4 photocatalyst did not show any obvious loss of photocatalytic activity during five cycle tests, which indicate that the heterostructured photocatalyst was highly stable and can be used repeatedly. Therefore, the work provides new insights into the design and fabrication of metal-organic frameworks (MOFs) for use as a visible light photocatalyst for degrading organic contaminants.  相似文献   

9.
Passive solar photocatalysis is one of the most efficient ways for the treatment of dye industry wastewater. Some dyes such as methyl orange are recalcitrant to photolysis; therefore, photocatalysts are used to expedite their degradation. Photocatalysts are semiconductors, and their activity can be improved by creating heterojunctions. In the current work, an active photocatalyst, Bi5O7I, was modified with activated carbon (AC), obtained by controlled carbonization of pistachio shells, to give xAC-Bi5O7I photocatalysts. AC loading improved the surface area of the catalyst and decreased its bandgap to 1.8 eV, making it suitable for use as a visible light photocatalyst. Activated carbon enhances adsorption, while Bi5O7I scavenges adsorbed molecules increasing the efficiency. 5AC-Bi5O7I catalyst containing 5% activated carbon displayed the optimum photocatalytic activity, which was 3.4-fold higher than that of pristine Bi5O7I. 5AC-Bi5O7I achieved 99.9 % reduction in the concentration of methyl orange in 80 min under sunlight irradiation. 5% AC-Bi5O7I is more efficient than commercial Degussa P25 photocatalyst as well. The methyl orange degradation efficiency of the catalysts studied was: 5AC-Bi5O7I > Bi5O7I > Degussa P25.  相似文献   

10.
Zhang  Biao  Liu  Yu  Zhou  Kanghong  Zhu  Hongyu  Gu  Dongxu  Ge  Wei  Gan  Ying  Hao  Jianyuan 《Journal of Materials Science: Materials in Electronics》2021,32(15):20539-20547
Journal of Materials Science: Materials in Electronics - In this work, the novel camellia-structured double Z-scheme BiOBr/g-C3N4/Bi2O2CO3 was simply prepared by a hydrothermal method. XRD, FTIR,...  相似文献   

11.
Several nanoporous Fe_2 O_3-xSx/S-doped g-C_3 N_4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe_2O_3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe_2 O_3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe_2 O_3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe_2 O_3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe_2 O_3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min~(-1) which was faster than those of the pure Fe_2 O_3(0.0016 min~(-1))and CNS(0.0044 min~(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe_2 O_3(6.6)/CNS hybrid are 33.5 m~2/g and0.195 cm~3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe_2 O_3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O_2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe_2 O_3(6.6)/CNS heterojunction between CNS and Fe_2 O_3 directly produces ·OH as well as ·O_2-radicals which is consistent with the results obtained from trapping experiments.  相似文献   

12.
At present, the construction of high-efficiency photocatalytic degradation system of antibiotic pollutants has become a research hotspot. In this paper, Bi28O32(SO4)10/NiAl LDH photocatalyst with three-dimensional spherical morphology was successfully prepared by hydrothermal method followed by calcination, thus applying to the degradation of tetracycline. The characterization and photochemical analysis of the resulted material were used to determine the type of formed heterojunction. Bi28O32(SO4)10 and NiAl LDH build a close contact interface. The matching band gap structure makes S-scheme heterojunction formed between the two single component. Benefited from this structure, the Bi28O32(SO4)10/NiAl LDH composite with the mass ratio of 1:1 exhibited 95% efficiency in degradation of tetracycline after irradiation for 120 min, and it is stable, reusable and universal. The apparent rate constant of TC degradation by heterojunction catalyst is greatly increased, which is 5.35 and 4.91 times that of Bi28O32(SO4)10 and NiAl LDH. Overall, this paper provides a way of thinking for the design of new bismuth based photocatalytic materials, and thus providing a reference for the rational design of S-scheme heterojunction.  相似文献   

13.
Magnetic NiFe2O4/SBA-15 nanocomposites were synthesized by a facile impregnation method, and NiFe2O4 nanoparticles presented spinel phase structure and existed in the mesopores of SBA-15. Partial mesopores were blocked by NiFe2O4 nanoparticles and micropores formed, which the capillarity of micropores played a decisive role for methylene blue (MB) adsorption. The saturation magnetization increased from 2.34 emu g?1 to 10.03 emu g?1 with the NiFe2O4 content, while the specific surface area decreased from 552.18 m2 g?1 to 260.40 m2 g?1 and pore volume decreased from 1.13 cm3 g?1 to 0.49 cm3 g?1. MB adsorption could be improved by optimizing the NiFe2O4 content of the nanocomposites. MB could be adsorbed completely in 60 min with the optimum nanocomposites and could be separated easily from water by magnetic separation technique.  相似文献   

14.
A cost-effective ultrasonication approach was employed to synthesize NiFe2O4/MXene heterostructures. The as-synthesized heterostructures demonstrated outstanding photodegradation performance and anti-bacterial activity as compared to individual NiFe2O4 (NiFe) or MXene. The NiFe nanoparticles (NPs) helped in effectively preventing the re-stacking of MXene flakes and in increasing the surface area of the heterostructure. The obtained sheet-sheet linkage provided an admirable opportunity for excellent wastewater treatment and antibacterial activity. The photocatalytic degradation of organic pollutants by the introduced photocatalyst NiFe/MXene heterostructures has been observed to be about 4 and 6.72 times boosted compared to MXene and NiFe, respectively. Furthermore, the heterostructure materials demonstrated outstanding anti-bacterial activity against gram negative E-coli bacteria, while the mechanism of methylene blue dye degradation by NiFe/MXene was clarified through kinetic studies of the degradation process. We hope this work will be considered a significant scientific contribution for young researchers dealing with water desalination.  相似文献   

15.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   

16.
Constructing heterojunction provides a promising tactic to improve the photocatalytic efficiency of catalysts. In this paper, hierarchical FeIn2S4/BiOBr heterostructure photocatalysts were prepared by facile two step methods and applied to effectively remove ciprofloxacin (CIP) and tetracycline (TC) under visible light. Compared to single catalyst, FeIn2S4/BiOBr hybrids display significantly improved photocatalytic activity. Among the series, 6 wt% FeIn2S4/BiOBr shows the optimal photocatalytic performance, where the degradation efficiencies of TC and CIP are 3.15 and 2.88 times greater than pure BiOBr, respectively. Such an improvement could arise from the S-scheme heterojunctions and unique hierarchical structures, which brings stronger light absorption, higher photoexcited charge separation efficiency and superior redox ability. Furthermore, 6 wt% FeIn2S4/BiOBr composite exhibits excellent stability and reusability. Radical capture experiments and EPR analyses uncover that O2, h+ and OH are primarily reactive substances during photocatalytic removal of TC. The products of TC were detected by LC-MS analyses and possible decomposition paths are proposed. Eventually, a possible photodegradation mechanism over FeIn2S4/BiOBr S-scheme heterojunction is proposed. These findings supply new perspective for the simple synthesis of S-scheme photocatalysts with promising applications in environment remediation.  相似文献   

17.
18.
N doped TiO2/NiFe2O4/diatomite (NND) photocatalytic composite was fabricated via a facile two-step sol-gel method. Its crystal structure, morphology, specific surface area, pore size distribution and magnetic property were systematically characterized and analyzed. The photoactivity of NND was investigated via the degradation of Rhodamine B (RhB) solution under visible light irradiation. NND achieved high photodegradation efficiency due to the synergy between adsorption of diatomite (Dt) and degradation of TiO2, as well as the synergy between TiO2 and NiFe2O4. NND could be simply separated from aquatic environment using an external magnet, due to the ferromagnetism of NiFe2O4. We consider that NND is applicable for wastewater treatment.  相似文献   

19.
Multiple heterojunction system of Bi2MoO6/WO3/Ag3PO4 was designed via constructing binary heterojunction Bi2MoO6/WO3, followed by the deposition of nano-Ag3PO4 on the surface of Bi2MoO6/WO3. Various techniques were employed to characterize the properties of the as-prepared catalytic system. In this study, the decomposition efficiency of C.I. reactive blue 19 (RB-19) was used as a measure of photocatalytic activity and the Bi2MoO6/WO3/Ag3PO4 composite exceeded its stand-alone components (pristine Ag3PO4, WO3/Ag3PO4 and Bi2MoO6/Ag3PO4) by 3.16 times, 2.63 times and 1.75 times, respectively. The photocatalytic tests implied that the construction of multiple heterojunction could achieve efficient separation of photo-generated electrons and holes. A possible photocatalytic mechanism for Bi2MoO6/WO3/Ag3PO4 system was also proposed according to the results of trapping experiments.  相似文献   

20.
The low surface area, high recombination rate of photogenerated charge carriers, narrow visible range activity, and difficulty in the separation from cleaned solutions limit the wide application of g-C3N4 as a photocatalyst. Herein, we have succeeded in developing a one-pot strategy to overcome the above-mentioned difficulties of g-C3N4. The broadening of the visible-light response range and inducing magnetic nature to g-C3N4 was succeeded by preparing a nanocomposite with Fe2O3 via a facile solvothermal method. The preparation method additionally imparted layer exfoliation of g-C3N4 as evident from the XRD patterns and TEM images. The strong interaction between the components is revealed from the XPS analysis. The broadened visible-light absorbance of Fe2O3/g-C3N4 with a Z-scheme photocatalytic degradation mechanism is well evident from the UV‒Vis DRS analysis and PL measurement of the composite with terephthalic acid. The active species of photocatalysis were further investigated using scavenging studies in methylene blue degradation that revealed hydroxyl radicals and holes as the major contributors to the activity of Fe2O3/g-C3N4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号