首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inverted zinc oxide photonic crystal structures were fabricated from polystyrene sphere (PSS) template using the sol–gel solution of ZnO by spin-coating method. It is easily able to control and fabricate the photonic crystal structures using the self-organized PSS with a size of 193 nm. The inverted ZnO photonic crystal structures observed show the (111) tendency of the hexagonal compact arrangement formation. The resulting structures possess the photonic band gaps in the near-ultraviolet range and exhibit an enhanced photoluminescence spectrum. The technology can effectively increase the light output intensity or efficiency for the applications of optoelectronic devices.  相似文献   

2.
A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells.

PACS

61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)  相似文献   

3.
In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices.  相似文献   

4.
Sea urchin-like nanostructures of ZnO consisting of ZnO nanowires with blunt faceted ends were grown on Si (100) substrates by oxidation of metallic Zn at 600 °C. ZnO nanowires having a diameter of 30–60 nm and length of 2–4 Μm were in similar shape with uniform diameter along its entire length with well faceted blunt ends. X-ray diffraction and transmission electron microscope analysis showed that the as-grown nanostructures were highly crystalline with wurtzite hexagonal structure having lattice constants of a=b=3.25 å and c=5.21 å. Room temperature photoluminescence (PL) measurements showed a weak near band-edge emission at 380 nm, but a strong green emission at 500–530 nm. A model for vapor-solid (VS) growth mechanism of ZnO nanowires was presented, in which nucleation of ZnO is crucial for the growth of the nanostructures.  相似文献   

5.
We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm−2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV–vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.  相似文献   

6.
Zn1−xAgxO nanoparticles (NPs) (x=0, 0.02, 0.04, and 0.06) were synthesized by a sol–gel method. The synthesized undoped ZnO and Zn1−xAgxO-NPs were characterized by X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV–visible spectroscopy. The XRD patterns indicated that undoped and Ag-doped ZnO crystallize in a hexagonal wurtzite structure. The TEM images showed ZnO NPs with nearly spherical shapes, with particle size distributed over the nanometer range. Evidence of dopant incorporation is demonstrated in the XPS measurements of the Ag-doped ZnO NPs. The Raman measurements indicated that the undoped and Ag-doped ZnO-NPs had a high crystalline quality. From the result of UV–vis, the band-gap values of prepared undoped and Ag-doped ZnO were found to decrease with an increase in Ag concentration. The obtained undoped and Ag-doped ZnO nanoparticles were used as a source material to grow undoped and Ag-doped ZnO nanowires on n-type Si substrates, using a thermal evaporation set-up. Two probe method results indicated that the Ag-doped ZnO nanowires exhibit p-type properties.  相似文献   

7.
Thin films composed of ZnO nanowires (NWs) hierarchically organized with an urchin-like 3D morphology were obtained by combining the electrochemical deposition and sphere lithography methods. Deposited on a transparent conductive oxide substrate (TCO), a monolayer of carboxylate modified polystyrene spheres organized with a hexagonal closed-packed structure played the role of a template. The spheres were activated in a solution of zinc chloride by the formation of bonds between the carboxylate terminals and the Zn2+ ions and were used as a template for the electrodeposition of vertically aligned ZnO NWs around them. Without this treatment, ZnO NWs were deposited only on the TCO substrate between the PS spheres. To reach a density of nanowires high enough to obtain the urchin morphology, the concentration of ZnCl2 had to be at least equal to 2 M. It was also found, as soon as small grains of ZnO started to be electrodeposited on the polystyrene spheres that the spheres were no longer close packed. The space created between them increased with the increase in the number of small ZnO grains and the increase in their length, allowing the further growth of the nanowires between the spheres. As a result the initial round shape of the spheres was modified and the urchin-like ZnO exhibited an ellipsoidal shape.  相似文献   

8.
ZnO nanowires having a diameter in the range of 15–40 nm and several tens of micrometers in length were grown on steel alloy substrates by the thermal evaporation technique without the use of any catalyst or additives. A detailed structural analysis revealed that the as-grown ZnO nanowires are single crystalline with wurtzite hexagonal structures and preferentially oriented in the c-axis direction. Origination of a strong and sharp Raman-active E2 mode at 436.6 cm-1 indicated that the grown ZnO nanowires have good crystal quality with the hexagonal wurtzite phase. Photoluminescence spectra also exhibited a sharp and strong peak in UV and a suppressed and weak band in the visible region, confirming the good optical properties and less structural defects for the deposited products. Additionally, a systematic growth mechanism is also proposed in detail to acquire a better understanding for the growth of nanowires on steel alloy substrate.  相似文献   

9.
In this study, Pb-filled ZnO nanowires [Pb(core)/ZnO(shell)] were synthesized by a simple and novel one-step vapor transport and condensation method by microwave-assisted decomposition of zinc ferrite. The synthesis was performed using a conventional oven at 1000 W and 5 min of treatment. After synthesis, a spongy white cotton-like material was obtained in the condensation zone of the reaction system. HRTEM analysis revealed that product consists of a Pb-(core) with (fcc) cubic structure that preferentially grows in the [111] direction and a hexagonal wurtzite ZnO-(Shell) that grows in the [001] direction. Nanowire length was more than 5 μm and a statistical analysis determined that the shell and core diameters were 21.00 ± 3.00 and 4.00 ± 1.00 nm, respectively. Experimental, structural details, and synthesis mechanism are discussed in this study.  相似文献   

10.
Undoped and Pb-doped ZnO nanowires with different lead concentrations were grown on Si(111) substrates using a thermal evaporation method. Scanning electron microscopy (SEM) results showed that, the undoped ZnO nanowires were well aligned with uniform diameters and lengths. On the other hand, the Pb-doped ZnO nanowires were tapered and not aligned in a unique direction. X-ray diffraction patterns and Raman measurements clearly indicated hexagonal structures for all of the products. In addition, the Raman results demonstrated that the Pb-doped ZnO nanowires had a lower crystalline quality than the undoped ZnO nanowires. Photoluminescence (PL) studies also confirmed the Raman results and showed a lower optical property for the Pb-doped ZnO nanowires compared to the undoped ZnO nanowires. Moreover, the PL results showed a smaller band-gap for the Pb-doped ZnO nanowires compared to the undoped ZnO.  相似文献   

11.
Undoped and group-I elements doped ZnO nanowires were synthesized using a thermal evaporation method. Field emission scanning electron microscopy (FESEM) results showed that, the undoped ZnO nanowires were ultra-long with uniform diameters. On the other hand, the length of the doped ZnO nanowires was in the range of some hundred of nanometers. X-ray diffraction (XRD) patterns clearly indicated hexagonal structures for all of the products. X-ray photoelectron spectroscopy (XPS) studies confirmed the oxidation states of Li, Na, K, in the ZnO lattice. An asymmetric O 1s peak indicated the presence of oxygen in an oxide layer. The effect of doping on the optical band-gap and crystalline quality was also investigated using photoluminescence (PL), UV–vis, and Raman spectrometers. The Raman spectra of the products indicated a strong E2 (high) peak. The PL spectra exhibited a strong peak in the ultraviolet (UV) region of the electromagnetic spectrum for all of the ZnO nanowires. The UV peak of the doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. In addition, the UV–vis spectra of the samples showed similar results compared to the PL results.  相似文献   

12.
Highly ordered ZnO nanowire arrays were fabricated by paired cell method into nanoporous anodic alumina oxide (AAO) template. ZnO nanowires were uniformly assembled into the ordered channels of the AAO template. TEM and selected-area electron diffraction patterns indicated that the ZnO nanowires grow as a single crystal. The factors influencing the final filled density of ZnO nanowires, including the solution concentration and the diffusing temperature are discussed briefly. In addition, the possible mechanism is also proposed to account for the growth of the ZnO nanowires in the AAO template. This result has established that this paired cell method makes it possible to grow single-crystalline ZnO nanowires in the AAO template under appropriate conditions.  相似文献   

13.
Ethanol sensor based on ZnO and Au-doped ZnO nanowires   总被引:1,自引:0,他引:1  
ZnO nanowires and Au-doped ZnO nanowires were prepared by oxidation reaction. The oxidation was performed by heating zinc powder and a mixture of zinc and 1 wt% gold powder which was pressed into a tube shape at 600 °C for 24 h. The ethanol sensors based on ZnO nanowires were simply fabricated by applying silver electrode at each end of the tube and inserting a coil heater into the tube. The ethanol sensing properties of ZnO nanowires were observed from the resistance change under ethanol vapor atmosphere. By considering the sensitivity and response time, the optimum operating temperature of the ethanol sensor was found to be 240 °C. Also, it was found that the sensitivity of the sensor based on Au-doped ZnO nanowires exhibits higher value than that of the sensor based on undoped ZnO nanowires.  相似文献   

14.
High density ZnO nanorod arrays were grown on Si substrates coated with ZnO seed layers via aqueous solution route. The ZnO seed layers were deposited on the substrate using DC reactive sputtering and RF magnetron sputtering. It was found that ZnO seed layer with (1 0 3) preferred orientation, prepared using DC reactive sputtering, did not facilitate the formation of ZnO nanorods in the solution grown process. Prior seeding of the surface by ZnO layer with (0 0 2) preferred orientation, deposited using RF magnetron sputtering, leads to nucleation sites on which ZnO nanorod arrays can grow in a highly aligned fashion. ZnO nanorods with well-defined hexagonal facets (0 0 2) were grown almost vertically over the entire substrate. The uniformity and alignment of the nanorod arrays are strongly related to the properties of underneath ZnO seed layers.  相似文献   

15.
采用两步法在FTO导电玻璃衬底上制备ZnO纳米棒,首先利用浸渍-提拉法在FTO导电玻璃衬底上制备ZnO晶种层,然后把有ZnO晶种层的FTO衬底放入盛有生长溶液的反应釜中利用水热法制备ZnO纳米棒.研究了生长溶液的浓度、生长温度和生长时间对所制备的对ZnO纳米棒阵列的微结构和光致发光性能的影响,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和光致发光谱(PL)研究了ZnO样品的结构、形貌和光学性质.实验结果表明:所制备的ZnO纳米棒呈现六方纤锌矿结构,沿(002)晶面择优取向生长,纳米棒的平均直径约为100 nm,长度约为2.5 μm.所制备的ZnO纳米棒在390 nm附近具有很强的紫外发光峰和在550 nm附近有较弱的宽绿光发光峰.  相似文献   

16.
Vertically aligned ZnO nanowire (NW) arrays have been synthesized on silicon substrates by chemical vapor deposition. The growth of ZnO NWs may be dominated by vapor-solid nucleation mechanism. Morphological, structural, optical, and field emission characteristics can be modified by varying the growth time. For growth time that reaches 120 min, the length and diameter of ZnO NWs are 1.5 μm and 350 nm, respectively, and they also show preferential growth orientation along the c-axis. Room-temperature photoluminescence spectra exhibit a sharp UV emission and broad green emission, and the enhanced UV-to-green emission ratio with increasing growth time might originate from the reduced concentration of surface defects. Furthermore, strong alignment and uniform distribution of ZnO NWs can also effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region. The field emission measurement indicated that the growth time plays an important role in density- and morphology-controlled ZnO NWs, and thus, ZnO NWs are expected to be used in versatile optoelectronic devices.  相似文献   

17.
ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The appearance of the instability is due to negative feed-back mechanism under certain experimental conditions (crystallization temperature, vapor supersaturation, etc).  相似文献   

18.
ABSTRACT: We report the growth and characterization of ZnO/ZnTe core/shell nanowire arrays on indium tin oxide. Coating of the ZnTe layer on well-aligned vertical ZnO nanowires has been demonstrated by scanning electron microscope, tunneling electron microscope, X-ray diffraction pattern, photoluminescence, and transmission studies. The ZnO/ZnTe core/shell nanowire arrays were then used as the active layer and carrier transport medium to fabricate a photovoltaic device. The enhanced photocurrent and faster response observed in ZnO/ZnTe, together with the quenching of the UV emission in the PL spectra, indicate that carrier separation in this structure plays an important role in determining their optical response. The results also indicate that core/shell structures can be made into useful photovoltaic devices.  相似文献   

19.
In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance.  相似文献   

20.
We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence measurements. The chemical state of P was investigated by electron energy loss spectroscopy (EELS) analyses in individual ZnO nanowires. P was found to substitute at oxygen sites (PO), with the presence of anti-site P on Zn sites (PZn). P-doped ZnO nanowires were high resistance and the related P-doping mechanism was discussed by combining EELS results with electrical measurements, structure characterization and photoluminescence measurements. Our method provides an efficient way of synthesizing P-doped ZnO nanowires and the results help to understand the P-doping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号