首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal desorption of CO from nickel surfaces has been used to follow the interaction of carbon with oxygen. The CO desorption spectrum subsequent to oxygen exposure of an initially clean nickel surface exhibits three principal peaks denoted as α, β1, and β2. The low-temperature a peak is believed to correspond to the desorption of molecularly adsorbed CO. The high-temperature β2 peak is due to the desorption of CO formed by surface combination of dissociatively adsorbed oxygen and carbon diffusing from the crystal interior. The intermediate-temperature β1 peak is also believed to be due to CO formed by combination of O and C at the surface. Evidence suggests that the surface carbon contributing to the β1 peak arises from the segregation of carbon from the bulk to the surface before or during oxygen exposure. The β1 peak is very sensitive to surface orientation and is, in particular, significantly enhanced as the degree of atomic surface roughness increases. These results are discussed in terms of preferential carbon segregation to surface defect sites.  相似文献   

2.
We present a combined theoretical and experimental study on the morphological, structural, and optical properties of β-Ag2MoO4 microcrystals. β-Ag2MoO4 samples were prepared by a co-precipitation method. The nucleation and formation of Ag nanoparticles on β-Ag2MoO4 during electron beam irradiation were also analyzed as a function of electron beam dose. These events were directly monitored in real-time using in situ field emission scanning electron microscopy (FE-SEM). The thermodynamic equilibrium shape of the β-Ag2MoO4 crystals was built with low-index surfaces (001), (011), and (111) through a Wulff construction. This shape suggests that the (011) face is the dominating surface in the ideal morphology. A significant increase in the values of the surface energy for the (011) face versus those of the other surfaces was observed, which allowed us to find agreement between the experimental and theoretical morphologies. Our investigation of the different morphologies and structures of the β-Ag2MoO4 crystals provided insight into how the crystal morphology can be controlled so that the surface chemistry of β-Ag2MoO4 can be tuned for specific applications. The presence of structural disorder in the tetrahedral [MoO4] and octahedral [AgO6] clusters, the building blocks of β-Ag2MoO4, was used to explain the experimentally measured optical properties.  相似文献   

3.
A review is given on the theoretical studies of charge correlations in θ-(BEDT-TTF)2X. Various studies show that within a purely electronic model on the θ-type lattice with on-site U and nearest neighbor Vp and Vc interactions, the diagonal stripe, c-axis three-fold, and the vertical stripe charge correlations are favored in the regime Vp<Vc, VpVc, and Vp>Vc, respectively. In the realistic parameter regime of VpVc, there is competition between the c-axis three fold state and diagonal stripe state. Since these are different from the experimentally observed a-axis three fold and the horizontal stripe charge correlations, additional effects have to be included in order to understand the experiments. The electron–lattice coupling, which tends to distort the lattice into the θd-type, is found to favor the horizontal stripe state, suggesting that the occurrence of this stripe ordering in the actual materials may not be of purely electronic origin. On the other hand, distant electron–electron interactions have to be considered in order to understand the a-axis three fold correlation, whose wave vector is close to the nesting vector of the Fermi surface. These studies seem to suggest that the minimal model to understand the charge correlation in θ-(BEDT-TTF)2X may be more complicated than expected. Future problems regarding the competition between different types of charge correlations are discussed.  相似文献   

4.
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.  相似文献   

5.
We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr). Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.  相似文献   

6.
7.
Candida albicans (C. albicans) infection shows a growing burden on human health, and it has become challenging to search for treatment. Therefore, this work focused on the antifungal activity, and cytotoxic effect of biosynthesised nanostructures on human ovarian tetracarcinoma cells PA1 and their corresponding mechanism of cell death. Herein, the authors fabricated advanced biosynthesis of uncoated α‐Fe2 O3 and coated α‐Fe2 O3 nanostructures by using the carbohydrate of Spirulina platensis. The physicochemical features of nanostructures were characterised by UV–visible, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The antifungal activity of these nanostructures against C. albicans was studied by the broth dilution method, and examined by 2′, 7′‐dichlorofluorescein diacetate staining. However, their cytotoxic effects against PA1 cell lines were evaluated by MTT and comet assays. Results indicated characteristic rod‐shaped nanostructures, and increasing the average size of α‐Fe2 O3 @ZnO nanocomposite (105.2 nm × 29.1 nm) to five times as compared to α‐Fe2 O3 nanoparticles (20.73nm × 5.25 nm). The surface coating of α‐Fe2 O3 by ZnO has increased its antifungal efficiency against C. albicans. Moreover, the MTT results revealed that α‐Fe2 O3 @ZnO nanocomposite reduces PA1 cell proliferation due to DNA fragmentation (IC50 18.5 μg/ml). Continual advances of green nanotechnology and promising findings of this study are in favour of using the construction of rod‐shaped nanostructures for therapeutic applications.Inspec keywords: nanocomposites, toxicology, nanofabrication, cellular biophysics, X‐ray diffraction, iron compounds, biochemistry, cancer, antibacterial activity, transmission electron microscopy, biomedical materials, wide band gap semiconductors, DNA, II‐VI semiconductors, visible spectra, molecular biophysics, ultraviolet spectra, nanomedicine, zinc compounds, nanoparticles, microorganisms, Fourier transform infrared spectraOther keywords: Spirulina platensis, antifungal activity, α‐Fe2 O3 nanoparticles, antiovarian cancer properties, Candida albicans infection, cytotoxic effect, biosynthesised nanostructures, human ovarian tetracarcinoma cell PA1, cell death, uncoated α‐Fe2 O3 , coated α‐Fe2 O3 nanostructures, α‐Fe2 O3 ‐ZnO nanocomposite, carbohydrate, physicochemical features, UV‐visible spectroscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, broth dilution method, 2′, 7′‐dichlorofluorescein diacetate staining, PA1 cell lines, comet assays, MTT assays, rod‐shaped nanostructures, surface coating, PA1 cell proliferation, DNA fragmentation, green nanotechnology, Fe2 O3 ‐ZnO, Fe2 O3   相似文献   

8.
The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage.  相似文献   

9.
Microcrystals of α-tetragonal (α-t) boron with unit cell parameters a=9.05077(6) and c=5.13409(6) Å and measured density 2.16–2.22 g cm−3 were obtained by pyrolysis of decaborane B10H14 at pressures of 8–9 GPa and temperatures of 1100–1600 C. The crystal structure is in good agreement with the model proposed by Hoard et al (1958 J. Am. Chem. Soc. 80 4507). However, compared to the original model, we found small deformations of icosahedra and changes in the interatomic distances within the unit cell of the synthesized α-t boron.  相似文献   

10.
The goal of this work is simulation of possible structures, formed by boron ions (B+) during adsorption on Si(100) and Ge(100) surfaces. Calculations were carried out using a semi-empirical method, known as the Modified Neglect of Differential Overlap method (MNDO). The surface was simulated using of Si49(Ge49) and Si63(Ge63) clusters. Results of quantum-chemical calculations the boron ion (B+) interaction with Si(100) − 2 × 1 and Ge(100) − 2 × 1 surfaces are presented and show adsorption barriers for boron ions and migration barriers of adsorbed boron ion (during migration along surface dimer row and along surface dimer).  相似文献   

11.
Rifampicin-loaded poly(ε-caprolactone)–b-poly(ethylene glycol)–poly(ε-caprolactone) flower-like polymeric micelles display low aqueous physical stability over time and undergo substantial secondary aggregation. To improve their physical stability, the lyoprotection–lyophilization process was thoroughly characterized. The preliminary cryoprotectant performance of mono- and disaccharides (e.g. maltose, glucose), hydroxypropyl-β-cyclodextrin (HPβCD) and poly(ethylene glycol) (PEG) of different molecular weights was assessed in freeze–thawing assays at −20°C, −80°C and −196°C. The size and size distribution of the micelles at the different stages were measured by dynamic light scattering (DLS). A cryoprotectant factor (fc) was determined by taking the ratio between the size immediately after the addition of the cryoprotectant and the size after the preliminary freeze–thawing assay. The benefit of a synergistic cryoprotection by means of saccharide/PEG mixtures was also assessed. Glucose (1 : 20), maltose (1 : 20), HPβCD (1 : 5) and glucose or maltose mixtures with PEG3350 (1 : 20) (copolymer:cryoprotectant weight ratio) were the most effective systems to protect 1 per cent micellar systems. Conversely, only HPβCD (1 : 5) cryoprotected more concentrated drug-loaded micelles (4% and 6%). Then, those micelle/cryoprotectant systems that displayed fc values smaller than 2 were freeze-dried. The morphology of freeze-dried powders was characterized by scanning electron microscopy and atomic force microscopy and the residual water content analysed by the Karl Fisher method. The HPβCD-added lyophilisates were brittle porous cakes (residual water was between 0.8% and 3%), easily redispersable in water to form transparent systems with a minimal increase in the micellar size, as determined by DLS.  相似文献   

12.
Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by αVβ3 and αvβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress αVβ3 integrins.  相似文献   

13.
Intrinsic short hole diffusion length is a well-known problem for α-Fe2O3 as a visible-light photocatalytic material. In this paper, a nanodisk morphology was designed to remarkably enhance separation of electron-hole pairs of α-Fe2O3. As expected, α-Fe2O3 nanodisks presented superior photocatalytic activity toward methylene blue degradation: more than 90% of the dye could be photodegraded within 30 min in comparison with a degradation efficiency of 50% for conventional Fe2O3 powder. The unique multilayer structure is thought to play a key role in the remarkably improved photocatalytic performance. Further experiments involving mechanism investigations revealed that instead of high surface area, ·OH plays a crucial role in methylene blue degradation and that O·2− may also contribute effectively to the degradation process. This paper demonstrates a facile and energy-saving route to fabricating homogenous α-Fe2O3 nanodisks with superior photocatalytic activity that is suitable for the treatment of contaminated water and that meets the requirement of mass production.  相似文献   

14.
In this study, ellagic acid (ELA), a skin anticancer drug, is capped on the surface(s) of functionalised graphene oxide (GO) nano‐sheets through electrostatic and π–π staking interactions. The prepared ELA‐GO nanocomposite have been thoroughly characterised by using eight techniques: Fourier‐transform infrared spectroscopy (FTIR), zeta potential, X‐ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM) topographic imaging, transmission electron microscopy (TEM), and surface morphology via scanning electron microscopy (SEM). Furthermore, ELA drug loading and release behaviours from ELA‐GO nanocomposite were studied. The ELA‐GO nanocomposite has a uniform size distribution averaging 88 nm and high drug loading capacity of 30 wt.%. The in vitro drug release behaviour of ELA from the nanocomposite was investigated by UV–Vis spectrometry at a wavelength of λ max 257 nm. The data confirmed prolonged ELA release over 5000 min at physiological pH (7.4). Finally, the IC 50 of this ELA‐GO nanocomposite was found to be 6.16 µg/ml against B16 cell line; ELA and GO did not show any cytotoxic effects up to 50 µg/ml on the same cell lines.  相似文献   

15.
The inverse transform, g(t) = ??1(e?sβ), 0 < β < 1, is a stable law that arises in a number of different applications in chemical physics, polymer physics, solid-state physics, and applied mathematics. Because of its important applications, a number of investigators have suggested approximations to g(t). However, there have so far been no accurately calculated values available for checking or other purposes. We present here tables, accurate to six figures, of g(t) for a number of values of β between 0.25 and 0.999. In addition, since g(t), regarded as a function of β, is uni-modal with a peak occurring at t = tmax we both tabulate and graph tmax and 1/g(tmax) as a function of β, as well as giving polynomial approximations to 1/g(tmax).  相似文献   

16.
A systematic study of La-based perovskite-type oxides from the viewpoint of their electronic conduction properties was performed. LaCo0.5Ni0.5Oδ was found to be a promising candidate as a replacement for standard metals used in oxide electrodes and wiring that are operated at temperatures up to 1173 K in air because of its high electrical conductivity and stability at high temperatures. LaCo0.5Ni0.5Oδ exhibits a high conductivity of 1.9 × 103 S cm−1 at room temperature (R.T.) because of a high carrier concentration n of 2.2 × 1022 cm−3 and a small effective mass m∗ of 0.10 me. Notably, LaCo0.5Ni0.5Oδ exhibits this high electrical conductivity from R.T. to 1173 K, and little change in the oxygen content occurs under these conditions. LaCo0.5Ni0.5Oδ is the most suitable for the fabrication of oxide electrodes and wiring, though La1−xSrxCoOδ and La1−xSrxMnOδ also exhibit high electronic conductivity at R.T., with maximum electrical conductivities of 4.4 × 103 S cm−1 for La0.5Sr0.5CoOδ and 1.5 × 103 S cm−1 for La0.6Sr0.4MnOδ because oxygen release occurs in La1−xSrxCoOδ as elevating temperature and the electrical conductivity of La0.6Sr0.4MnOδ slightly decreases at temperatures above 400 K.  相似文献   

17.
Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors.  相似文献   

18.
Yan Yan  Jie Gong  Zhanguo Zong 《Thin solid films》2010,518(17):4989-4996
The surface structure, electronic properties, lattice dynamics, and the electron-phonon coupling for p-doped diamond (001)-(2 × 1) and (111)-(2 × 1) thin films have been extensively investigated using ab initio methods within the virtual crystal approximation. The calculations of p-doped diamond thin films strongly favor dimer reconstruction of diamond surfaces. The physical origin of superconductivity of diamond (001)-(2 × 1), respectively, and (111)-(2 × 1) thin films which is higher than that of bulk diamond is systematically studied. It is showed that surface vibrational modes of diamond (001)-(2 × 1) surfaces give main contributions to superconducting transition temperature Tc, while Tc of diamond (111)-(2 × 1) surfaces is attributed to the combined action of surface and bulk vibrational modes. Therefore, at the highest concentration (13.98 × 1021 cm− 3) Tc ≈ 56.5 K of diamond (111)-(2 × 1) surfaces is about twice as high as that of bulk and diamond (001)-(2 × 1) surfaces.  相似文献   

19.
We present a mathematical (ordered pull-through; OPT) model of the cell-density profile for the mammalian lens epithelium together with new experimental data. The model is based upon dimensionless parameters, an important criterion for inter-species comparisons where lens sizes can vary greatly (e.g. bovine (approx. 18 mm); mouse (approx. 2 mm)) and confirms that mammalian lenses scale with size. The validated model includes two parameters: β/α, which is the ratio of the proliferation rate in the peripheral and in the central region of the lens; and γGZ, a dimensionless pull-through parameter that accounts for the cell transition and exit from the epithelium into the lens body. Best-fit values were determined for mouse, rat, rabbit, bovine and human lens epithelia. The OPT model accounts for the peak in cell density at the periphery of the lens epithelium, a region where cell proliferation is concentrated and reaches a maximum coincident with the germinative zone. The β/α ratio correlates with the measured FGF-2 gradient, a morphogen critical to lens cell survival, proliferation and differentiation. As proliferation declines with age, the OPT model predicted age-dependent changes in cell-density profiles, which we observed in mouse and human lenses.  相似文献   

20.
Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号