首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张天平  王敏 《控制与决策》2018,33(12):2113-2121
针对一类具有输入、状态未建模动态和非线性输入的耦合系统,提出一种自适应神经网络控制方案.利用径向基函数神经网络逼近未知非线性连续函数;引入动态信号和正则化信号处理状态及输入未建模动态;通过引入非线性映射,将具有时变输出约束的严格反馈系统化为不含约束的严格反馈系统.最后,通过理论分析验证闭环系统中所有信号是半全局一致最终有界的,仿真结果进一步验证了所提出控制方案的有效性.  相似文献   

2.

针对一类具有输入及状态未建模动态的非线性系统, 设计K滤波器来估计系统不可量测状态, 基于动态面控制技术并利用径向基函数神经网络的逼近能力, 提出一种输出反馈自适应跟踪控制方案. 利用Nussbaum 函数性质, 有效地解决了高频增益符号未知问题. 在控制器设计中引入规范化信号来约束输入未建模动态, 从而有效地抑制其产生的扰动. 通过理论分析证明了闭环控制系统是半全局一致终结有界的.

  相似文献   

3.
The global output feedback regulation problem is studied for a class of cascade nonlinear systems. The considered system represents more general classes of nonlinear uncertain systems, including the integral input‐to‐state stable (iISS) unmodeled dynamics, the unknown control direction, the parameter uncertainty, and the external disturbance additively in the input channel. Technically, we explore the changing supply rate technique for the iISS system to deal the iISS unmodeled dynamics and apply the Nussbaum‐type gain into the control design to overcome the unknown control direction. Additionally, a dynamic extended state observer in the form of a time‐varying Kalman observer is novelly constructed to overcome the unmeasured state components in the nonlinear uncertainties. It is shown that the global regulation problem is well addressed by the proposed method, and its efficacy is demonstrated by a fan speed control system.  相似文献   

4.
针对飞机舵面故障时产生的各种内部未建模动态、系统不确定参数、未知输入增益等问题,提出一种同时存在匹配/非匹配不确定性的多输入多输出飞机舵面故障$L_1$容错控制方法.首先,推导出等效线性参数时变模型;然后,基于投影算子提出$L_1$自适应容错控制方法,推导Lyapunov方程,并证明稳定性;最后,分析所提方法的瞬态和稳态性能.仿真结果验证了所提出方法良好的容错性、鲁棒性和稳定性,并保证了系统各参数的瞬态和稳态有界性.  相似文献   

5.
The potential clinical applications of adaptive neural network control for pharmacology in general, and anesthesia and critical care unit medicine in particular, are clearly apparent. Specifically, monitoring and controlling the depth of anesthesia in surgery is of particular importance. Nonnegative and compartmental models provide a broad framework for biological and physiological systems, including clinical pharmacology, and are well suited for developing models for closed-loop control of drug administration. In this paper, we develop a neural adaptive output feedback control framework for adaptive set-point regulation of nonlinear uncertain nonnegative and compartmental systems. The proposed framework is Lyapunov-based and guarantees ultimate boundedness of the error signals corresponding to the physical system states and the neural network weighting gains. The approach is applicable to nonlinear nonnegative systems with unmodeled dynamics of unknown dimension and guarantees that the physical system states remain in the nonnegative orthant of the state-space for nonnegative initial conditions. Finally, a numerical example involving the infusion of the anesthetic drug midazolam for maintaining a desired constant level of depth of anesthesia for noncardiac surgery is provided to demonstrate the efficacy of the proposed approach.  相似文献   

6.
In this paper, the problem of neural adaptive dynamic surface quantized control is studied the first time for a class of pure‐feedback nonlinear systems in the presence of state and output constraint and unmodeled dynamics. The considered system is under the control of a hysteretic quantized input signal. Two types of one‐to‐one nonlinear mapping are adopted to transform the pure‐feedback system with different output and state constraints into an equivalent unconstrained pure‐feedback system. By designing a novel control law based on modified dynamic surface control technique, many assumptions of the quantized system in early literary works are removed. The unmodeled dynamics is estimated by a dynamic signal and approximated based on neural networks. The stability analysis indicates that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the output and all the states remain in the prescribed time‐varying or constant constraints. Two numerical examples with a coarse quantizer show that the proposed approach is effective for the considered system.  相似文献   

7.
A neural network-based robust adaptive control design scheme is developed for a class of nonlinear systems represented by input–output models with an unknown nonlinear function and unmodeled dynamics. By on-line approximating the unknown nonlinear functions and unmodeled dynamics by radial basis function (RBF) networks, the proposed approach does not require the unknown parameters to satisfy the linear dependence condition. It is proved that with the proposed control law, the closed-loop system is stable and the tracking error converges to zero in the presence of unmodeled dynamics and unknown nonlinearity. A simulation example is presented to demonstrate the method.  相似文献   

8.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

9.
This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone. By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input, the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness. Only one adaptive parameter is needed no matter how many unknown parameters there are. The system investigated is more general and there is no need to solve Linear matrix inequality (LMI). Moreover, with our method, some assumptions imposed on nonlinear terms and dead-zone input are relaxed. Finally, simulations illustrate the effectiveness of the proposed adaptive control scheme.  相似文献   

10.
This paper proposes a new direct adaptive control algorithm which is robust with respect to additive and multiplicative plant unmodeled dynamics. The algorithm is designed based on the reduced-order plant, which is assumed to be minimum phase and of known order and relative degree, but is analyzed with respect to the overall plant which, due to the unmodeled dynamics, may be nonminimum phase and of unknown order and relative degree. It is shown that if the unmodeled dynamics are sufficiently small in the low-frequency range, then the algorithm guarantees boundedness of all signals in the adaptive loop and "small" residual tracking errors for any bounded initial conditions. In the absence of unmodeled dynamics, the residual tracking error is shown to be zero.  相似文献   

11.
For a class of uncertain multi-input multi-output non-linear systems an adaptive output feedback control methodology is developed using linearly parameterized neural networks. The neural network operates over a tapped delay line of memory units, comprised of system input/output signals. The adaptive laws for neural network parameters are written in terms of a linear observer of the nominal system's error dynamics. Ultimate boundedness of the error signals is shown through Lyapunov's direct method. Simulations illustrate the theoretical results.  相似文献   

12.
对于具有不确定因素的离散非线性动态系统,通过校正神经网络预报器的输出,运用加权 预报控制性能指标和网络辨识器模型局部线性化的思想,提出了一个间接鲁棒自适应神经网 络控制算法,仿真研究证实了该控制策略的鲁棒性和有效性.  相似文献   

13.
Neural-network control of mobile manipulators   总被引:9,自引:0,他引:9  
In this paper, a neural network (NN)-based methodology is developed for the motion control of mobile manipulators subject to kinematic constraints. The dynamics of the mobile manipulator is assumed to be completely unknown, and is identified online by the NN estimators. No preliminary learning stage of NN weights is required. The controller is capable of disturbance-rejection in the presence of unmodeled bounded disturbances. The tracking stability of the closed-loop system, the convergence of the NN weight-updating process and boundedness of NN weight estimation errors are all guaranteed. Experimental tests on a 4-DOF manipulator arm illustrate that the proposed controller significantly improves the performance in comparison with conventional robust control.  相似文献   

14.
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm. The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory. The unmodeled dynamics of the system are considered, and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network. The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory. The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.   相似文献   

15.
In this paper, an adaptive robust dynamic surface control is proposed for a class of uncertain nonlinear interconnected systems with time‐varying output constraints and dynamic input and output coupling. The directly coupled inputs and control inputs are both of nonlinear input unmodeled dynamics. To counteract the instable impact of the nonlinear input unmodeled dynamics, normalization signals are designed on the basis of the convergence rates of their Lyapunov functions. With new state variables and control variables being defined, the real control inputs are obtained through solving the equations of intermediate control laws. The time‐varying constraints on output signals are implemented by introducing asymmetric barrier Lyapunov functions. In addition, dynamic signals and decentralized K‐filters are used to deal with the state unmodeled dynamics and to estimate the unmeasurable states, respectively. By the theoretical analysis, the signals in the closed‐loop system are proved to be semi‐globally uniformly ultimately bounded, and the output constraints are guaranteed simultaneously. A numerical example is provided to show the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
An adaptive prescribed performance control design procedure for a class of nonlinear pure‐feedback systems with both unknown vector parameters and unmodeled dynamics is presented. The unmodeled dynamics lie within some bounded functions, which are assumed to be partially known. A state transformation and an auxiliary system are proposed to avoid using the cumbersome formula to handle the nonaffine structure. Simultaneously, a parameter‐type Lyapunov function and L function are designed to ensure the prescribed performance of the pure‐feedback system. As illustrated by examples, the proposed adaptive prescribed performance control scheme is shown to guarantee global uniform ultimate boundedness. At the same time, this method not only guarantees the prescribed performance of the system but also makes the tracking error asymptotically close to a certain value or stable.  相似文献   

17.
In this paper, adaptive neural tracking control is proposed based on radial basis function neural networks (RBFNNs) for a class of multi-input multi-output (MIMO) nonlinear systems with completely unknown control directions, unknown dynamic disturbances, unmodeled dynamics, and uncertainties with time-varying delay. Using the Nussbaum function properties, the unknown control directions are dealt with. By constructing appropriate Lyapunov-Krasovskii functionals, the unknown upper bound functions of the time-varying delay uncertainties are compensated. The proposed control scheme does not need to calculate the integral of the delayed state functions. Using Young s inequality and RBFNNs, the assumption of unmodeled dynamics is relaxed. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded.  相似文献   

18.
梁相龙  姚建勇 《控制与决策》2023,38(4):1008-1014
针对机电伺服系统精确动力学模型难以获取以及系统状态信息的测量易受噪声影响的问题,设计一种基于指令滤波与神经网络相结合的非线性反步控制算法,该算法能够有效地补偿未建模动态和外部扰动对机电伺服系统的影响.首先,引入指令滤波器来获取已知信号的微分估计并处理噪声;其次,利用神经网络估计未知的系统动态,包括未建模的摩擦和外部干扰;然后,神经网络权值的更新律通过梯度下降算法在线实现,没有离线学习阶段;最后,利用李雅普诺夫函数分析方法证明闭环系统的稳定性.为验证所提出算法的有效性,在机电伺服实验平台上进行大量对比实验,实验结果表明,所提出的算法具有良好的控制效果,对系统不确定性和外部干扰具有良好的鲁棒性.  相似文献   

19.
This paper describes a neural network state observer-based adaptive saturation compensation control for a class of time-varying delayed nonlinear systems with input constraints. An advantage of the presented study lies in that the state estimation problem for a class of uncertain systems with time-varying state delays and input saturation nonlinearities is handled by using the NNs learning process strategy, novel type Lyapunov-Krasovskii functional and the adaptive memoryless neural network observer. Furthermore, by utilizing the property of the function tan h2(?/?)/?, NNs compensation technique and backstepping method, an adaptive output feedback controller is constructed which not only efficiently avoids the problem of controller singularity and input saturation, but also can achieve the output tracking. And the proposed approach is obtained free of any restrictive assumptions on the delayed states and Lispchitz condition for the unknown nonlinear functions. The semiglobal uniform ultimate boundedness of all signals of the closed-loop systems and the convergence of tracking error to a small neighborhood are all rigorously proven based on the NN-basis function property, Lyapunov method and sliding model theory. Finally, two examples are simulated to confirm the effectiveness and applicability of the proposed approach.  相似文献   

20.
This paper studies an adaptive neural control for nonlinear multiple‐input multiple‐output systems with dynamic uncertainties, hysteresis input, and time delay. The studied systems are composed of N nonlinear time‐delay subsystems and the interconnection terms are contained in every equation of each subsystem. Adaptive neural control algorithms are developed by introducing a well‐defined smooth function. The unknown time‐varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing an available dynamic signal. The main advantage of the proposed controllers is that they contain fewer parameter estimates that need to be updated online. Consequently, the accuracy of ultimate tracking errors asymptotically approaches a pre‐defined bound, and all signals in the closed‐loop systems are also ensured to be uniformly ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness and merits of the proposed adaptive neural network control schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号