共查询到19条相似文献,搜索用时 54 毫秒
1.
2.
基于空间邻域加权的模糊C-均值聚类及其应用研究* 总被引:2,自引:0,他引:2
针对模糊C-均值聚类法用于图像聚类时仅利用了像素的灰度信息,而忽视空间位置信息,导致在噪声区域和边界处有误分类现象,提出一种新的基于空间邻域加权的模糊C-均值图像聚类法。首先,定义了一个空间邻域信息函数,该函数能够有力抑制噪声点,同时能够很好保留边界的特性;其次,设计了具有空间约束的样本邻域信息加权隶属度矩阵;最后,将该方法应用于人工合成图像和模拟MR脑图像的聚类。实验结果表明,该方法能够获得较好的聚类效果,同时具有较强的抑制噪声的能力。 相似文献
3.
基于PSO的模糊C-均值聚类算法的图像分割 总被引:3,自引:0,他引:3
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。 相似文献
4.
黄力明 《计算机工程与设计》2008,29(9):2300-2303
模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题.为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心:由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度.实验结果表明,该方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割. 相似文献
5.
张辉 《计算机工程与科学》2010,32(6):45-47
模糊C-均值聚类是模式识别中的重要算法之一,很早就被应用到图像分割中。由于原始的模糊C-均值聚类算法没有考虑图像的空间信息,算法对图像中的噪音点十分敏感。针对这个问题,很多稳健模糊C-均值聚类算法被提出。通常的做法是在原来模糊C-均值聚类的目标函数中加入空间信息惩罚项。本文讨论这类方法,具体分析不同算法的空间信息加入方式,并指出其优缺点。 相似文献
6.
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 相似文献
7.
基于二维直方图的图像模糊聚类分割新方法 总被引:6,自引:0,他引:6
基于二维直方图的模糊聚类分割算法可以有效地抑制噪声的干扰。但是,FCM算法用于图像数据聚类时的最大缺陷是运算的开销太大,这就限制了这种方法在图像分割中的应用。该文根据FCM算法和灰度图像的特点,提出了一种适用于灰度图像分割的抑制式模糊C-均值聚类算法(S-FCM)。通过调节抑制因子α来提高分割速度和分类的正确率。实验结果表明,新算法对小目标灰度图像的分割效果优于FCM算法。 相似文献
8.
针对Krinidis和公茂果等提出的系列鲁棒模糊局部C-均值聚类算法存在聚类中心迭代公式缺乏严格数学理论基础的不足,于是将其聚类目标函数及其约束条件采用拉格朗日乘子法进行严格数学推导,从而获得最优解逼近的隶属度和聚类中心迭代表达式,并通过多次循环迭代实现图像聚类分割。实验结果表明,本文所建议的鲁棒模糊局部C-均值聚类分割算法是有效的,相比现有鲁棒模糊局部C-均值聚类分割算法更适合复杂遥感等图像的分割需要。 相似文献
9.
提出了一种结合C-均值聚类算法和模糊熵的图像分割方法,该方法先采用C均值聚类算法对含噪图像进行初步分割,再利用模糊熵准则作后续处理。该方法一方面能够继承C-均值聚类算法的优点,可以灵活地用在基于多特征和多阂值的图像分割中,另一方面充分考虑了图像的区域信息,利用模糊熵最小作为准则,对c均值聚类算法初步分割结果的错分类点作了进一步的处理,克服了C-均值聚类算法对噪声敏感的缺点。实验结果表明,本文方法在运算开销上只比C-均值聚类算法多4~6S,对于低信噪比的图像能够取得优于C-均值聚类算法的分割效果。 相似文献
10.
针对模糊局部C-均值聚类算法计算复杂度高且对大数据样本集进行聚类时极为耗时的特点,提出了快速的模糊局部C-均值聚类分割算法。该算法将目标像素点与其邻域像素点构成的共生矩阵引入模糊局部C-均值算法,得到新的聚类隶属度和聚类中心表达式。对像素分类时,利用邻域像素隶属度进行滤波处理,进一步改善了算法的抗噪性。实验结果表明,该算法满足了图像分割有效性的需求,相较于模糊局部C-均值聚类算法,该算法具有更好的分割性能和实时性,能更好地满足实际场合图像分割的需要。 相似文献
11.
结合当前比色传感器阵列多样性、不稳定等特点,并针对当前现有的阵列图像分割算法中或者效率低,或者易受光照环境影响等现状,本文在模糊C均值聚类算法基础上,提出了一种图像分割算法.该算法首先通过HSI颜色空间下I分量在行、列投影实现图像网格划分,并结合局部阵列点图像的平滑直方图信息解决了FCM算法聚类条件初始化的难题.其次,为了提高阵列点图像分割结果的准确度,该算法通过目标函数引入了不同权重系数的H分量和I分量,实现了色彩信息的引入.通过图像分割效果测试,本文所提出的图像分割算法在所有阵列点图像分割中展示了96.54%的总体最优分割精度,可以有效、准确地实现比色传感器阵列图像的目标提取. 相似文献
12.
犹豫模糊C-均值(hesitant fuzzy C-means, HFCM)聚类算法在一定程度上处理了图像中不同像素块之间的不确定性, 但由于其目标函数中不包含任何局部空间信息, 因此对噪声比较敏感, 当噪声较大时无法获得较好的分割精度. 针对上述问题, 提出了一种改进犹豫模糊C-均值(improved hesitant fuzzy C-means, IHFCM)的图像分割方法. 首先给出了犹豫模糊元(hesitant fuzzy element)的补齐方法, 然后提出了犹豫模糊元之间的相似性度量, 利用犹豫模糊元之间的相似性度量构造了新颖的模糊因子融合到HFCM的目标函数中, 新的模糊因子不仅考虑了局部窗口中的空间信息而且考虑了像素间的相似性, 平衡噪声带来的影响且保留了图像细节. 最后, 在合成图像、BSDS500数据集图像以及自然图像上的分割实验结果表明, 所提出的IHFCM算法对噪声有良好的鲁棒性, 提升了分割精度. 相似文献
13.
在介绍聚类分析原理的基础上,比较了几种聚类分割算法,得出了模糊C-均值聚类方法在图像分割中的优势.最后,基于排列组合熵和灰度特征,结合模糊C-均值聚类算法对图像纹理进行分割.实验结果表明,该方法既能快速地分割图像,又具有较好的抗噪能力,分割效果较为理想. 相似文献
14.
极限学习机(Extreme learning machine, ELM)作为一种新技术具有在回归和分类中良好的泛化性能。局部空间信息的模糊C均值算法(Weighted fuzzy local information C-means, WFLICM)用邻域像素点的空间信息标记中心点的影响因子,增强了模糊C均值聚类算法的去噪声能力。基于极限学习机理论,对WFLICM进行改进优化,提出了基于ELM的局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means based on ELM,ELM-NKWFLICM)。该方法基于ELM特征映射技术,将原始数据通过ELM特征映射技术映射到高维ELM隐空间中,再用改进的新核局部空间信息的模糊C均值聚类图像分割算法(New kernel weighted fuzzy local information C-means,NKWFLICM)进行聚类。 实验结果表明 ELM-NKWFLICM算法具有比WFLICM算法更强的去噪声能力,且很好地保留了原图像的细节,算法在处理复杂非线性数据时更高效, 同时克服了模糊聚类算法对模糊指数的敏感性问题。 相似文献
15.
模糊C均值聚类算法在多元图像分割中的应用 总被引:1,自引:0,他引:1
改进的模糊C均值聚类算法在对多元图像进行分割的过程中,通过给图像中各个类的对象分配不同的权值来提高模糊C均值聚类算法对不同大小类的敏感性。实验证明,经过改进的模糊C均值聚类算法克服了原始算法对多元图像中类大小敏感性差的问题。 相似文献
16.
针对传统模糊C均值聚类方法对噪声敏感和过分依赖于初始聚类中心的缺点,提出基于SSCL的模糊C均值图像分类的自适应算法。该算法首先通过SSCL获得初始类别数和类别中心,然后作为模糊C均值聚类的输入,自动对图像进行分割,并对图像分割结果利用空间信息进行后处理。实验结果表明该方法较好地解决了FCM算法中的初始化和噪声敏感问题,具有较好的分类结果。 相似文献
17.
红外图像具有对比度低和信噪比低等特点,这对红外光伏面板图像的分割始终是一个巨大的挑战.为了解决传统的模糊C均值(FCM)聚类算法易受到初始聚类中心不确定的影响和不考虑空间信息的问题,提出了一种基于模糊C均值改进的聚类分割算法,该算法利用直方图的特点确定初始聚类中心,同时在传统的模糊C均值(FCM)和模糊核C均值算法(KFCM)的基础上,利用像素之间的空间信息和邻域像素之间的关系改进传统FCM聚类目标函数,从而推导出新的目标函数.实验结果表明,该算法在分割质量和效果上与Otsu算法、文献[20]的自适应k-means算法及模糊核C均值算法(KFCM)相比,过分割和错分割率明显降低,且分割效果非常接近手动分割图. 相似文献
18.
19.
模糊C均值(FCM)聚类用于彩色图像分割具有简单直观、易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出了一种快速模糊聚类方法(FFCM)。这种方法利用分层减法聚类把图像数据分成一定数量的色彩相近的子集,一方面,子集中心用于初始化聚类中心点;另一方面,利用子集中心点和分布密度进行模糊聚类,由于聚类样本数量显著减少以及分层减法聚类计算量小,故可以大幅提高模糊C均值算法的计算速度,进而可以利用聚类有效性分析指标快速确定聚类数目。实验表明,这种方法不需事先确定聚类数目并且在优化聚类性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现彩色图像的快速分割。 相似文献