首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen IC  Chen LH  Gapin A  Jin S  Yuan L  Liou SH 《Nanotechnology》2008,19(7):075501
High coercivity iron-platinum-coated carbon nanocones (CNCs) have been fabricated for magnetic force microscopy (MFM) by direct-current plasma-enhanced chemical vapor deposition growth of nanocones on tipless cantilevers followed by sputtering and annealing of the FePt film. The FePt-coated CNC probe has many localized magnetic stray fields due to the high-aspect-ratio geometry and small radius of the tip. The MFM imaging on magnetic recording media was performed using CNC probes and compared with the imaging by FePt-coated silicon probes. An image with 20?nm lateral resolution has been demonstrated.  相似文献   

2.
We developed a micromagnetic model of magnetic force microscopy (MFM) tip to compare it with the simple point probe model. We simulated the MFM signal to provide an understanding of the measurement of the field generated by the write head in perpendicular recording hard disk drives. When the magnetic pole density at the air-bearing surface of the head's main pole is increased from 0.2 T to 1 T, the MFM tip with vertical anisotropy shows a flower-state magnetization, while the tip with horizontal anisotropy has more complicated switching modes. It is found that the signal ratio of the two MFM tips with vertical/horizontal anisotropy does have a one-to-one correspondence to the average magnetic field in the tip; however, the signal ratio may change sign because of the magnetic moments' switching in the tip with vertical anisotropy. The result of micromagnetic simulation is quite similar to that of the point probe model, and has good agreement with experiments.  相似文献   

3.
The quantitative measurement of the magnetization of individual magnetic nanoparticles (MNPs) using magnetic force microscopy (MFM) is described. Quantitative measurement is realized by calibration of the MFM signal using an MNP reference sample with traceably determined magnetization. A resolution of the magnetic moment of the order of 10(-18) A m(2) under ambient conditions is demonstrated, which is presently limited by the tip's magnetic moment and the noise level of the instrument. The calibration scheme can be applied to practically any magnetic force microscope and tip, thus allowing a wide range of future applications, for example in nanomagnetism and biotechnology.  相似文献   

4.
Kim K  Seo Y  Jang H  Chang S  Hong MH  Jhe W 《Nanotechnology》2006,17(7):S201-S204
We have demonstrated high-resolution shear-mode magnetic force microscopy (MFM) using a quartz tuning fork in ambient conditions. A commercial magnetic cantilever tip was attached to one prong of the tuning fork to realize shear-mode MFM operation. We have obtained MFM images with a spatial resolution of less than 100?nm and demonstrated a frequency resolution of ~1?mHz, values which are achieved by phase shift detection methods.  相似文献   

5.
Variable-field magnetic force microscope (MFM) is introduced to characterize the magnetic behavior of commercially available MFM probes that is relevant to interpret MFM imaging. A Nanotec Electronica S.L. microscope has been conveniently modified to apply magnetic fields in axial direction (up to 1.5 kOe) and in-plane direction (up to 2.0 kOe). Axial and transeverse hysteresis loops of the probes have been generated by measuring the changes in the MFM contrast observed when the magnetic field is applied. The variation of the MFM signal is ascribed to the modification of the magnetic state of the tips. This is enabled by the large coercitivity (~1.7 kOe) of the checked longitudinal recording media. The properties of the probes depend on the coating material, the macroscopic tip shape, and tip radius. In only a few cases, the magnetization of the probe can be oriented along in-plane orientation. In addition, the stray field of the tips has been deduced by measuring the influence of the probe in the magnetic state of the checked samples.  相似文献   

6.
Extraordinary Hall effect probes with 160?nm × 160?nm working area were fabricated using photo-?and electron-beam lithographic procedures with the aim of direct measurements of MFM cantilever tip magnetic properties. The magnetic field sensitivity of the probes was 35?Ω?T(-1). Magnetic induction of the MFM cantilever tips coated by Co and SmCo films was measured with the probes. It was shown that the resolution of the probes was of the order of 10?nm.  相似文献   

7.
High resolution magnetic force microscopy (MFM) has been carried out on L1(0)-FePt dot arrays patterned by plasma modified nanosphere lithography. An ex situ tip magnetization reversal experiment is carried out to determine the magnetic domains and verify the imaging stability of MFM and the mutual perturbations between the magnetic tip and the sample. We have identified that the critical size for the single domain region is about 90?nm across. Comparison with MFM image simulation also suggests that the magnetizations of the triangular dots in both single and double domain states are parallel to one edge of the dots, indicating the large uniaxial magnetocrystalline anisotropy of the L1(0)-FePt phase and the need for decreasing the magnetostatic energy.  相似文献   

8.
The cross-track profile of media noise is measured on a precision spinstand for oriented and nonoriented media. These data are correlated with magnetic force microscopy (MFM) images to determine the location of track-edge noise with high spatial resolution. A significant component of track-edge noise is located in a narrow band at the edge of bits recorded in opposition to the previously saturation-erased direction. This reverse erase-edge noise (REEN) increases as orientation ratio increases. The magnitude and distribution of REEN is consistent with a reverse-dc-erase mechanism. δM data indicate a greater influence of magnetostatic and/or exchange coupling for the oriented media. Together with larger on-track reverse-dc-erase noise and higher supralinear transition noise, these results suggest enhanced collective magnetization reversal for the oriented media relative to the nonoriented media. MFM images also reveal the presence of narrow magnetic-dipolar strips at the track edges. These dipolar strips are generated by cross-track components of the head field. The track-edge dipole moment decreases as orientation ratio increases due to preferential alignment of easy axes along the down-track direction. These dipoles contribute to base line shift and are not a significant source of media noise  相似文献   

9.
Sohn JS  Lee D  Cho E  Kim HS  Sul S  Lee BK  Lee M  Moon C  Park NC 《Nanotechnology》2011,22(3):035305
Discrete track magnetic recording media with a 60 nm track pitch and prewritten servo patterns were fabricated and tested for read/write performance, and a feasibility analysis of the embedded servo was performed. The fabrication process consisted of ultraviolet nanoimprint lithography (UV-NIL) and sequential ion beam etching on a conventional perpendicular magnetic recording medium. Magnetic patterns were written to the fabricated tracks at 700 kilo flux changes per inch (kFCI) using a spin stand and were read using magnetic force microscopy (MFM), with a resulting signal-to-noise ratio (SNR) of 12.15 dB. The servo pattern was also visualized with MFM. These results demonstrated the feasibility of writing to a 30 nm wide discrete data track and the workability of the embedded servo pattern.  相似文献   

10.
We fabricated bit-patterned media (BPM) at densities as high as 3.3 Tbit/in(2) using a process consisting of high-resolution electron-beam lithography followed directly by magnetic film deposition. By avoiding pattern transfer processes such as etching and liftoff that inherently reduce pattern fidelity, the resolution of the final pattern was kept close to that of the lithographic step. Magnetic force microscopy (MFM) showed magnetic isolation of the patterned bits at 1.9 Tbit/in(2), which was close to the resolution limit of the MFM. The method presented will enable studies on magnetic bits packed at ultra-high densities, and can be combined with other scalable patterning methods such as templated self-assembly and nanoimprint lithography for high-volume manufacturing.  相似文献   

11.
The future of consumer electronics depends on the capability to reliably fabricate nanostructures with given physical properties. Therefore, techniques to characterize materials and devices with nanoscale resolution are crucial. Among these is magnetic force microscopy (MFM), which transduces the magnetic force between the sample and a magnetic oscillating probe into a phase shift, enabling the locally resolved study of magnetic field patterns down to 10 nm. Here, the progress done toward making quantitative MFM a common tool in nanocharacterization laboratories is shown. The reliability and ease of use of the calibration method based on a magnetic reference sample, with a calculable stray field, and a deconvolution algorithm is demonstrated. This is achieved by comparing two calibration approaches combined with numerical modeling as a quantitative link: measuring the probe's effect on the voltage signal when scanning above a nanosized graphene Hall sensor, and recording the MFM phase shift signal when the probe scans across magnetic fields produced by metallic microcoils. Furthermore, in the case of the deconvolution algorithm, it is shown how it can be applied using the open‐source software package Gwyddion. The estimated magnetic dipole approximation for the most common probes currently in the market is also reported.  相似文献   

12.
Perpendicular magnetic recording media, composed of granular-type FePt-MgO films on Fe-Ta-C soft magnetic underlayer (SUL), have been fabricated on to 2.5-in glass disks. [001] textured FePt granular films with high-perpendicular magnetic anisotropy were obtained by annealing the FePt/MgO multilayer films. The FePt grain size, perpendicular coercivity, magnetic activation volume, and the exchange coupling between the FePt grains were found to be strongly dependent on the initial multilayer structures and the annealing conditions. The recording performance of the disks was evaluated by a spin-stand. The obtained results reveal a close correlation between the recording performance and magnetic properties. The thermal stability of the granular-type FePt media was studied using high-temperature magnetic force microscopy (MFM) technique, equipped with in situ sample heating, in the temperature range 25/spl deg/C-200/spl deg/C. The estimated signal decay at high temperature is ascribed to the temperature dependent magnetic anisotropy behavior.  相似文献   

13.
《Nanostructured Materials》1998,10(3):419-425
Thin films of cobalt and cobalt-based compounds are recently popular for magnetic recording media because of their high recording density and great magnetic properties. Many techniques exist to image magnetic structures in thin films, nevertheless, none of them can furnish complete information about the magnetic details. In the present work the combined use of the information obtainable with Lorentz microscopy, performed in a transmission electron microscope (TEM), and of an atomic force microscope (AFM) working in the magnetic mode (MFM, magnetic force microscopy), both performed on the same specimen area, enabled, in a easy way, the study of the 3D magnetic structure of domains, of single cross-ties, the location of Bloch lines within a domain wall and the magnetic structure of magnetisation ripples. The 3D magnetic structure and contrast of nanocrystalline thin films of cobalt (100 nm thick), prepared by evaporation in high vacuum, were investigated at a spatial resolution of tens of nanometers.  相似文献   

14.
A technique of numerical treatment of magnetic force microscopy (MFM) data matrices has been exploited to enhance the quality of raw MFM images of patterned Co thin films obtained by Electron Beam Lithography on RF sputtered 30-nm-thick Co samples. The pattern consists of chains of elliptical cylinders whose major axis is around 2.5 $mu$ m and whose minor axis is around 0.5 $mu$m (aspect ratio 5:1). In this work, a new differential approach is proposed. Two or more MFM images of the same surface area of a soft ferromagnetic material submitted to different magnetic fields $H$ are examined, and the different arrangements of the local magnetization, as emerging from contrast differences in MFM images, are analyzed as functions of $H$. It is shown that this differential approach is able to account for the effect of the MFM tip on the magnetization of the investigated soft magnetic material. The patterned Co samples used to demonstrate this method have been demagnetized before each MFM scan in the plane of the film by applying an alternate field of progressively small absolute value.   相似文献   

15.
磁力显微镜的发展历史,原理和应用   总被引:1,自引:0,他引:1  
磁力显微镜(MFM)的分辨率高达20~50nm,是纳米尺度磁性材料表面磁结构研究新的有力的工具,本文简单介绍了MFM的历史,原理,运作和应用,并介绍了中科院物理所一年来的MFM研究,举了两个实例,最后,以MFM研究的重要问题作了评论。  相似文献   

16.
A basic inversion problem for the magnetic force microscopy (MFM) of a semiinfinite superconductor in the Meissner state is formulated, ac Detection is assumed, with the MFM tip oscillating at angular frequency Ω. The coupling of all electrodynamic fields is treated, including a normal-current density in the superconductor. Under certain assumptions on the tip and superconductor geometry, a unique penetration depth λ(z) can be recovered from onedimensional force gradient measurements. This development opens new possibilities for the nondestructive evaluation of superconducting crystals and films.  相似文献   

17.
Self-organized (Ga,Mn)As nanoclusters, embedded in GaAs and formed during thermal annealing of Ga1-xMnxAs layer at 500 °C or 600 °C, were studied using Transmission Electron Microscopy (TEM) and Magnetic Force Microscopy (MFM). We found that 10–20 nm large NiAs-type hexagonal MnAs nanocrystals gave magnetic contrast in MFM images, whereas smaller zinc-blende nanoinclusions were not visible by means of this technique. Theoretical simulations showed that MFM contrasts reflect interaction between magnetic tip and many randomly distributed MnAs nanocrystals.  相似文献   

18.
A scanning tunneling microscope (STM) for surface magnetic force measurements on thin-film longitudinal magnetic storage media is described. The usual rigid PtIr tip of the STM was replaced by a flexible Fe-film tip and the tip position was stabilized near the surface of the sample using the STM feedback system as tunneling occurs between the tip and sample surface. Images of a CoCrTa thin-film hard disk showing 5 μm×3 μm bit tracks written by the ferrite head of a computer disk drive are presented. The images shown are comparable to images of the bit tracks on textured surfaces using either ferrofluid decoration or other magnetic force microscopy (MFM) imaging techniques. The sensitivity of the Fe-film tip was such that the influence on the image due to magnetic forces was larger than the influence due to sample surface topography  相似文献   

19.
Magnetic force microscopy (MFM) measurements were performed on an exchange‐biased CoO/(Co/Pt) multilayer sample at 8.0 K. Applying an external magnetic field of up to 7.0 T saturates the ferromagnetic layer and the remaining uncompensated antiferromagnetic spins at the antiferromagnet/ferromagnet interfaces are imaged with high lateral resolution. The coupling between the uncompensated spins and the spins in the ferromagnet are found to be antiferromagnetic. In addition, a method to quantitatively analyze the MFM data is presented which allows the determination of the uncompensated spin density at the AF/FM interfaces. It was found that 7% of the spins at the interfaces are uncompensated and contribute to the exchange biasing.  相似文献   

20.
The micro/nanomagnetic behavior of magnetic systems is a key issue as the size of magnetic devices is reduced to or under the micrometer range. We study the magnetic behavior of nanomagnets under different applied magnetic field conditions by Magnetic Force Microscopy (MFM). MFM is sensitive mainly to magnetization distributions that generate magnetic fields. CoCr Magnets were deposited by electropulsed SPM onto a Si substrate with sizes ranging from 400×100 to 800×400 nm and thickness between 2 and 3 nm. MFM measurements were performed using a Digital Instruments (DI) Dimension 3100 SPM upgraded for measurements with an external magnetic field applied to the sample. The home-designed modification consists in an electromagnet with field guides towards the scanning region while measuring. Different magnetic fields up to 400 Oe were applied to the samples in-plane during the MFM measurements. The magnetic configuration for the different applied fields was then imaged by MFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号