首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Amylin, a secretory peptide of beta-cells, is the constituent peptide of islet amyloid, which is characteristic of NIDDM, and changes in amylin secretion in response to therapies may influence the rate of production of islet amyloid. The primary objective of this study was to determine whether therapy with sulfonylurea or basal insulin in NIDDM would alter amylin secretion in a way that might affect the formation of islet amyloid. RESEARCH DESIGN AND METHODS: In a randomized crossover design, eight subjects with NIDDM underwent three 8-week periods of therapy with diet alone, sulfonylurea, or exogenous basal insulin, with evaluation of amylin, amylin-like peptide (ALP), and glucose and C-peptide concentrations, both during fasting and after a standard breakfast. Changes in beta-cell function (% beta) were assessed, in the basal state by homeostasis model assessment (HOMA) and in the stimulated state by hyperglycemic clamps. Seven nondiabetic control subjects each underwent a meal profile and hyperglycemic clamp. RESULTS: Both sulfonylurea and insulin therapy reduced basal glucose concentrations compared with diet alone, but neither reduced the increased postprandial glucose increments. Both sulfonylurea and insulin therapy increased basal % beta, assessed by HOMA, but only sulfonylurea increased the second-phase C-peptide responses to the hyperglycemic clamp. Sulfonylurea increased time-averaged mean postprandial amylin and ALP concentrations compared with diet alone (geometric mean [1-SD range] for amylin, 4.9 [2.0-11.8] vs. 3.0 [1.4-6.2] pmol/l, P = 0.003; for ALP, 16.4 [8.5-31.7] vs. 10.1 [4.9-20.8] pmol/l, P = 0.001). Insulin therapy reduced basal ALP concentrations compared with diet alone (2.9 [1.5-5.6] vs. 6.0 [2.6-13.6] pmol/l, P = 0.03), but had no effect on postprandial concentrations of amylin (3.0 [1.3-6.5] pmol/l) or ALP (10.0 [5.5-18.1] pmol/l). CONCLUSIONS: By increasing postprandial concentrations of the constituent peptides of islet amyloid, sulfonylurea therapy might increase the rate of deposition of islet amyloid and thereby accelerate the decline of % beta in NIDDM, compared with diet therapy alone.  相似文献   

2.
An initial improvement in glycemic control is often followed by gradual deterioration of glycemia during insulin treatment of patients with noninsulin-dependent diabetes mellitus (NIDDM). We examined the causes of such worsening in a 12-month follow-up analysis of 100 insulin-treated NIDDM patients in the Finnish Multicenter Insulin Therapy Study who were treated with either combination therapy with insulin or insulin alone. In the entire study group, glycemic control averaged 9.7 +/- 0.2% at 0 months and 8.0 +/- 0.1%, 8.0 +/- 0.1%, 8.2 +/- 0.1%, and 8.5 +/- 0.2% at 3, 6, 9, and 12 months (P < 0.001 for each time point vs. 0 months). Glycemic control at 12 months was significantly worse than that at 3 (P < 0.001), 6 (P < 0.001), and 9 months (P < 0.02). Baseline body mass index was the most significant predictor of deterioration in glycemic control. During 1 yr, hemoglobin A1c decreased almost 3-fold more (by 1.7 +/- 0.2%; P < 0.001 vs. 0 months) in patients whose baseline weight was below the mean baseline body mass index of 28.1 kg/m2 (nonobese patients) than in those whose weight exceeded 28.1 kg/m2 (obese patients; 0.5 +/- 0.2%; P = NS vs. 0 months; P < 0.01 vs. obese patients). Glycemic control improved similarly over 1 yr in the nonobese subjects and deteriorated similarly in the obese patients regardless of their treatment regimen. Insulin doses, per body weight, were similar in the nonobese and obese patients. The nonobese patients consistently gained less weight during 12 months of combination therapy with insulin (3.5 +/- 0.6 kg at 12 months) than during insulin therapy alone (5.1 +/- 0.6 kg; P < 0.05). The treatment regimen did not influence weight gain in the obese group, who gained 4.4 +/- 1.0 kg during combination therapy with insulin and 4.5 +/- 1.1 kg during insulin therapy alone. We reached the following conclusions: 1) after an initial good response, glycemic control deteriorates more in obese than in nonobese patients with NIDDM; 2) in obese patients, weight gain per se cannot explain the poor glycemic response to combination or insulin therapy, but it may induce a disproportionately large increase in insulin requirements because of greater insulin resistance in the obese than in the nonobese; 3) in nonobese patients, glycemic control improves equally during 1 yr with combination therapy with insulin and insulin alone, but combination therapy with insulin is associated with less weight gain than treatment with insulin alone; 4) weight gain appears harmful, as it is associated with increases in blood pressure and low density lipoprotein cholesterol.  相似文献   

3.
OBJECTIVE: To determine the alterations in glucose metabolism in elderly patients with NIDDM. RESEARCH DESIGN AND METHODS: We studied 9 healthy elderly control subjects (73 +/- 1 yr of age; body mass index 25.7 +/- 0.4 kg/m2) and 9 untreated elderly NIDDM patients (72 +/- 2 yr of age; BMI 25.9 +/- 0.5 kg/m2). Each subject underwent a 3-h oral glucose tolerance test (40 g/m2); a 2-h hyperglycemic glucose clamp study (glucose 5.4 mM above basal); and a 4-h euglycemic insulin clamp (40 mM.m2.min-1). Tritiated glucose methodology was used to measure glucose production and disposal rates during the euglycemic clamp. RESULTS: Patients with NIDDM had a higher fasting glucose (9.3 +/- 0.3 vs. 5.1 +/- 0.1 mM in control subjects vs. NIDDM patients, respectively, P < 0.001) and a greater area under the curve for glucose during the OGTT (16.0 +/- 0.6 vs. 6.7 +/- 0.3 mM in control subjects vs. NIDDM patients, respectively, P < 0.01) than the healthy control subjects. During the hyperglycemic clamp, patients with NIDDM had an absent first-phase insulin response (112 +/- 6 vs. 250 +/- 31 pM in control subjects vs. NIDDM patients, respectively, P < 0.01), and a blunted second-phase insulin response (159 +/- 11 vs. 337 +/- 46 pM in control subjects vs. NIDDM patients, respectively, P < 0.01). Before the euglycemic clamp, fasting insulin (99 +/- 5 vs. 111 +/- 10 pM in control subjects vs. NIDDM patients, respectively) and hepatic glucose production (11.8 +/- 0.7 vs. 11.5 +/- 0.5 mumol.kg-1-min-1 in control subjects vs. NIDDM patients, respectively) were similar. Steady-state (180-240 min) glucose disposal rates during the euglycemic clamp were slightly, but not significantly, higher in the normal control subjects (36.5 +/- 1.1 vs. 33.1 +/- 1.9 mumol.kg-1-min-1 in control subjects vs. NIDDM patients, respectively, NS). CONCLUSIONS: We conclude that NIDDM in nonobese elderly subjects is characterized by a marked impairment in insulin release. This may be attributable to the toxic effects of chronic hyperglycemia on the beta-cell. When compared with age-matched control subjects, the NIDDM patients showed no increase in fasting insulin or hepatic glucose production, and insulin resistance was mild.  相似文献   

4.
Neural network subtyping of depression   总被引:1,自引:0,他引:1  
OBJECTIVE: To examine the mechanisms by which weight loss improves glycemic control in overweight subjects with NIDDM, particularly the relationships between energy restriction, improvement in insulin sensitivity, and regional and overall adipose tissue loss. RESEARCH DESIGN AND METHODS: Hyperinsulinemic glucose clamps were performed in 20 subjects (BMI = 32.0 +/- 0.5 [SEM] kg/m2, age = 48.4 +/- 2.7 years) with normal glucose tolerance (NGT) (n = 10) or mild NIDDM (n = 10) before and on the 4th (d4) and 28th (d28) days of a reduced-energy (1,100 +/- 250 [SD] kcal/day) formula diet. Body composition changes were assessed by dual energy x-ray absorptiometry and insulin secretory changes were measured by insulin response to intravenous glucose before and after weight loss. RESULTS: In both groups, energy restriction (d4) reduced fasting plasma glucose (FPG) (delta FPG: NGT = -0.4 +/- 0.2 mmol/l and NIDDM = -1.1 +/- 0.03 mmol/l, P = 0.002), which was independently related to reduced carbohydrate intake (partial r = 0.64, P = 0.003). There was a marked d4 increase in percent of insulin suppression of hepatic glucose output (HGO) in both groups (delta HGO suppression: NGT = 28 +/- 15% and NIDDM = 32 +/- 8%, P = 0.002). By d28, with 6.3 +/- 0.4 kg weight loss, FPG was further reduced (d4 vs. d28) in NIDDM only (P = 0.05), and insulin sensitivity increased in both groups (P = 0.02). Only loss of abdominal fat related to improvements in FPG (r = 0.51, P = 0.03) and insulin sensitivity after weight loss (r = 0.48, P = 0.05). In contrast to insulin action, there were only small changes in insulin secretion. CONCLUSIONS: Both energy restriction and weight loss have beneficial effects on insulin action and glycemic control in obesity and mild NIDDM. The effect of energy restriction is related to changes in individual macronutrients, whereas weight loss effects relate to changes in abdominal fat.  相似文献   

5.
Although hypophosphatemia is commonly present in diabetics, little is known about its isolated effects on glucose and insulin metabolism. We therefore investigated glucose metabolism in six nondiabetic subjects with chronic hypophosphatemia. When glucose was infused to maintain a constant hyperglycemic level (125 mg per deciliter [6.9 mmol per liter] above basal levels), the glucose infusion rate was 36 per cent less in the hypophosphatemic group than in controls (4.90 +/- 0.34 mg per kilogram of body weight per minute vs. 7.64 +/- 0.37, P < 0.001), although responses to endogenous insulin were similar. When exogenous insulin was infused at a constant rate to maintain an insulin level about 100 microU per milliliter (718 pmol per liter) above basal levels and glucose was infused as necessary to maintain fasting glucose levels, the infusion rate of glucose was 43 per cent lower in the hypophosphatemic group than in controls (3.80 +/- 0.58 mg per kilogram per minute vs. 6.70 +/- 0.33, P < 0.001), although the clearance rate of insulin was similar in both groups. These results indicate that hypophosphatemia is associated with impaired glucose metabolism in both the hyperglycemic and euglycemic states, and that this associated primarily reflects decreased tissue sensitivity to insulin. (N Engl J Med. 1980; 303; 1259-63.).  相似文献   

6.
This study was designed to determine the effect of a potent cholecystokinin antagonist, L-364,718, on canine pancreatic endocrine function following partial pancreatectomy. Plasma glucose, insulin, and glucagon were determined over a 2-hr interval following an intravenous bolus of 0.5 g/kg glucose in a 50% solution. The following groups were established: normal animals (group A, n = 5), normal animals pretreated with 20 nmole/kg L-364,178 (group B, n = 5), partially pancreatectomized animals (group C, n = 5), and partially pancreatectomized animals pretreated with 20 nmole/kg L-364,178 (group D, n = 5). In contrast to animals with an intact pancreas, pretreatment with L-364,718 following partial pancreatectomy resulted in a significant decrease in peak insulin (group C = 132.8 +/- 13.0 microU/ml vs Group D = 90.4 +/- 16.1 microU/ml, P < 0.05) and the basal-to-peak insulin difference (group C = 111.9 +/- 11.5 microU/ml vs group D = 77.5 +/- 16.6 microU/ml, P < 0.05). Despite this, the rate of glucose utilization (K value) was significantly increased in the partially pancreatectomized animals given the antagonist (group C = -1.22 +/- 0.22%/min vs group D = -2.79 +/- 0.427%/min) and there were no significant differences in basal or peak glucose when comparing the groups given L-364,718 with the groups given placebo (group A vs B and group C vs D). Thus, the CCK antagonist L-364,718 significantly decreases peak insulin in partially pancreatectomized animals but not in nonoperative control animals. There is a paradoxical increase in the rate of glucose utilization but no effect on glucose homeostasis. The effect of this antagonist in other models of reduced islet cell reserve (i.e., pancreas transplantation) remains to be determined.  相似文献   

7.
OBJECTIVE: We conducted this study to assess the metabolic alterations in elderly patients with NIDDM. RESEARCH DESIGN AND METHODS: Healthy, lean (n = 15; age, 73 +/- 1 years; BMI, 23.8 +/- 0.5 kg/m2), and obese (n = 10; age, 71 +/- 1 years; BMI, 28.9 +/- 1.2 kg/m2) control subjects and lean (n = 10; age, 75 +/- 2 years; BMI, 24.0 +/- 0.5 kg/m2) and obese (n = 23; age, 73 +/- 1 years; BMI, 29.9 +/- 0.7 kg/m2) NIDDM patients underwent a 3-h glucose tolerance test, a 2-h hyperglycemic glucose clamp study, and a 3-h euglycemic glucose clamp study with tritiated glucose methodology to measure glucose production and disposal rates. RESULTS: Waist-to-hip ratio (WHR) was greater in both lean and obese NIDDM patients than in control subjects. Insulin responses during the oral glucose tolerance test were similar in obese subjects (control subjects: 417 +/- 64 pmol/l; NIDDM patients: 392 +/- 47 pmol/l) but were reduced in lean NIDDM patients (control subjects: 374 +/- 34 pmol/l; NIDDM patients: 217 +/- 20 pmol/l, P < 0.01). Lean and obese NIDDM patients had absent first-phase insulin responses during the hyperglycemic clamp. Second-phase insulin responses were reduced in lean (P < 0.01 vs. control subjects by analysis of variance) but not obese NIDDM patients. Hepatic glucose output was not increased in lean or obese NIDDM patients. Steady-state (150-180 min) glucose disposal rates were 16% less in lean NIDDM patients (control subjects: 8.93 +/- 0.37 mg.kg LBM (lean body mass)-1.min-1; NIDDM patients: 7.50 +/- 0.28 mg.kg LBM-1.min-1, P < 0.05) and 37% less in obese NIDDM patients (control subjects: 8.17 +/- 0.38 mg.kg LBM-1.min-1; NIDDM patients: 5.03 +/- 0.36 mg.kg LBM-1.min-1, P < 0.001). CONCLUSIONS: Lean elderly NIDDM patients have a profound impairment in glucose-induced insulin release but mild resistance to insulin-mediated glucose disposal. Obese elderly NIDDM patients have adequate circulating insulin, but marked resistance to insulin-mediated glucose disposal. Hepatic glucose output is not increased in elderly NIDDM patients.  相似文献   

8.
Insulin resistance is characterized principally by impaired insulin-mediated glucose uptake which provokes a compensatory increase in pancreatic beta-cell secretory activity. For a time this may produce well-controlled plasma glucose levels but as the insulin resistance worsens the augmented insulin production becomes inadequate to keep plasma glucose at euglycemia leading to the development of non-insulin dependent diabetes mellitus (NIDDM), accompanied by hyperinsulinemia and hyperglycemia. A number of metabolic defects are associated with NIDDM including obesity, hypercoagulability, cardiovascular disease risk factors such as hypertension and dyslipidemia and these constitute the insulin resistance syndrome. The identity of the biochemical factor that might link all these defects is not yet known. We have hypothesized that platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) may be such a link. In this study, we measured plasma acetylhydrolase (EC.1.1.48), which degrades PAF to the inactive metabolise lyso-PAF, as a surrogate for PAF activity in three groups of hypercholesterolemic subjects: lean controls (n = 9), non-diabetic obese (n = 6) and NIDDM subjects (n = 6). The ages and body mass indices of the subjects were 46 +/- 3.1 and 24.2 +/- 2.2 for the lean controls, 52 +/- 2.5 and 28.7 +/- 0.9 for the NIDDM subjects and 60 +/- 2 and 27.6 +/- 2.1 for the obese, non-diabetic subjects (mean +/- S.E.M.). The measurements were made before and after therapy with the cholesterol-lowering drug lovastatin, a 3-hydroxy 3 methylglutaryl (HMG) coenzyme. A reductase inhibitor (40 mg/day) for 3 months. Fasting plasma glucose (FPG) levels were 91 +/- 11, 96 +/- 3 and 146 +/- 11 mg/dl, for the lean, obese and NIDDM subjects, respectively, before therapy began. Lovastatin did not affect FPG in any of the three subject groups. Before treatment, the fasting plasma insulin (FPI) levels were 6.1 +/- 0.92, 10.83 +/- 2.03 and 14.68 +/- 3.64 mU/l for the lean, non-diabetic obese and NIDDM subjects, respectively. After lovastatin therapy only the obese group exhibited a significant change in FPI (15.35 +/- 2.47 mU/l) (P < 0.05). Total cholesterol levels were similar in all three groups both before and after lovastatin therapy but within each group lovastatin therapy significantly reduced the total cholesterol by 32, 29 and 34% in the lean, obese and NIDDM subject groups respectively (P < 0.0001). Lovastatin therapy reduced LDL-cholesterol levels by 40, 32 and 46% in the lean, obese and NIDDM subjects, respectively, but produced no significant effect on HDL or triglyceride levels. Before therapy, the plasma acetylyhydrolase activities were 104 +/- 7, 164 +/- 7 and 179 +/- 7 nmol/ml per min in the lean, obese and NIDDM subjects, respectively. Lovastatin therapy reduced plasma acetylhydrolase levels to 70 +/- 7, 87 +/- 6 and 86 +/- 7 nmol/ml per min in the lean, obese and NIDDM subjects, respectively. Plasma acetylhydrolase activity was predominantly (> 80%) associated with LDL cholesterol both before and after lovastatin treatment. Also, plasma acetylhydrolase activity significantly correlated with fasting plasma insulin levels before lovastatin therapy but not after. Taken together, this study clearly implicates PAF metabolism in three defects associated with the insulin resistance syndrome: hypercholesterolemia, obesity and NIDDM. Additionally, we conclude that chronic hyperinsulinemia may play a significant role in the production of plasma acetylhydrolase.  相似文献   

9.
A new modelling analysis was developed to assess insulin sensitivity with a tracer-modified intravenous glucose tolerance test (IVGTT). IVGTTs were performed in 5 normal (NGT) and 7 non-insulin-dependent diabetic (NIDDM) subjects. A 300 mg/kg glucose bolus containing [6,6-(2)H2]glucose was given at time 0. After 20 min, insulin was infused for 5 min (NGT, 0.03; NIDDM, 0.05 U/kg). Concentrations of tracer, glucose, insulin and C-peptide were measured for 240 min. A circulatory model for glucose kinetics was used. Glucose clearance was assumed to depend linearly on plasma insulin concentration delayed. Model parameters were: basal glucose clearance (Cl(b)), glucose clearance at 600 pmol/l insulin concentration (Cl600), basal glucose production (Pb), basal insulin sensitivity index (BSI = Cl(b)/basal insulin concentration); incremental insulin sensitivity index (ISI = slope of the relationship between insulin concentration and glucose clearance). Insulin secretion was calculated by deconvolution of C-peptide data. Indices of basal pancreatic sensitivity (PSIb) and first (PSI1) and second-phase (PSI2) sensitivity were calculated by normalizing insulin secretion to the prevailing glucose levels. Diabetic subjects were found to be insulin resistant (BSI: 2.3 +/- 0.6 vs 0.76 +/- 0.18 ml x min(-1) x m(-2) x pmol/l(-1), p < 0.02; ISI: 0.40 +/- 0.06 vs 0.13 +/- 0.05 ml x min(-1) x m(-2) x pmol/l(-1), p < 0.02; Cl600: 333 +/- 47 vs 137 +/- 26 ml x min(-1) x m(-2), p < 0.01; NGT vs NIDDM). Pb was not elevated in NIDDM (588 +/- 169 vs 606 +/- 123 micromol x min(-1) x m(-2), NGT vs NIDDM). Hepatic insulin resistance was however present as basal glucose and insulin were higher. PSI1 was impaired in NIDDM (67 +/- 15 vs 12 +/- 7 pmol x min x m(-2) x mmol/l(-1), p < 0.02; NGT vs NIDDM). In NGT and in a subset of NIDDM subjects (n = 4), PSIb was inversely correlated with BSI (r = 0.95, p < 0.0001, log transformation). This suggests the existence of a compensatory mechanism that increases pancreatic sensitivity in the presence of insulin resistance, which is normal in some NIDDM subjects and impaired in others. In conclusion, using a simple test the present analysis provides a rich set of parameters characterizing glucose metabolism and insulin secretion, agrees with the literature, and provides some new information on the relationship between insulin sensitivity and secretion.  相似文献   

10.
OBJECTIVES: Elevated plasma endothelin (ET)-1 levels have been described in insulin-resistant states such as syndrome X, obesity, non-insulin-dependent diabetes mellitus, and in some studies in essential hypertension. To investigate whether increases in circulating ET-1 to levels observed in insulin-resistant states can modulate insulin levels and/or insulin sensitivity in humans, we assessed these variables during low, non-pressor-dose ET-1 compared with placebo infusion. DESIGN: In a randomized, single blind, crossover design, 10 lean normotensive male subjects received either an intravenous infusion of subpressor doses of ET-1 dissolved in polygeline or a control infusion of polygeline only (placebo). Using dynamic assessment by the minimal model approach with the modified frequent sampling intravenous glucose tolerance test (FSIGT) the following and other parameters were measured: insulin sensitivity; acute insulin response to glucose (AIR(G)) calculated as the average of the three peak values between 2 and 5 min after injection of glucose from which the basal insulin levels were subtracted; the initial area under the curve (AUC(1-19)) from insulin values between time 0 and 19 min and the first-phase insulin secretion (phi1) from insulin kinetics parameters. RESULTS: ET-1 infusion reduced AIR(G) (to 34.85 +/- 4.27 compared with 49.3 +/- 6.9 microU/ml during placebo, P=0.017) and the acute C-peptide response to glucose (to 2.33 +/- 0.41 compared with 3.1 +/- 0.44 ng/ml, P=0.018), decreased plasma insulin levels during the FSIGT compared with placebo (analysis of variance P<0.0001) and decreased the AUC(1-19) (to 2.1 +/- 0.2 compared with 2.9 +/- 0.3 U/l per 20 min, P<0.01) while phi1 tended to be lower. S1 measured during ET-1 infusion was unaltered (11.11 +/- 1.91 x 10(-4) versus 10.88 +/- 2.11 10(-4)/min per mU per l, NS). CONCLUSIONS: These findings demonstrate that an increase in circulating ET-1 to levels observed in insulin-resistant states acutely diminishes the insulin secretory response but does not significantly modify insulin sensitivity.  相似文献   

11.
OBJECTIVE: The primary purpose of this study was to evaluate the acute effect of exercise of differing intensity on plasma glucose and insulin responses to an oral glucose challenge. RESEARCH DESIGN AND METHODS: Six obese men and six obese men with NIDDM of similar age, weight, percentage body fat, and VO2peak participated in the study. Each subject underwent two 7-day exercise programs in a counterbalanced order at 2-week intervals. During each 7-day exercise period, the subjects cycled every day at a power output corresponding to 50% VO2peak for 70 min or 70% VO2peak for 50 min. Muscle glycogen utilization was estimated during exercise on day 7 using a [3H]glucose infusion technique in conjunction with indirect calorimetry. During the day before and after each 7-day exercise period, a 3-h oral glucose tolerance test (OGTT) was administered after a 12-h overnight fast. RESULTS: The average caloric expenditure did not differ between exercise at 50 and 70% VO2peak in both obese and obese NIDDM subjects. However, the carbohydrate oxidation was higher (P < 0.05) during exercise at 70 than 50% VO2peak in obese subjects (77 +/- 5 vs. 68 +/- 6 g) and obese NIDDM subjects (70 +/- 4 vs. 58 +/- 6 g). Muscle glycogen utilization was also higher (P < 0.05) during exercise at 70 than 50% VO2peak in obese subjects (59 +/- 9 vs. 30 +/- 7 g) and in obese NIDDM subjects (48 +/- 5 vs. 24 +/- 5 g). In obese subjects, plasma glucose response area during the OGTT did not change after 7 days of exercise at either 50 or 70% VO2peak. Plasma insulin response area during the OGTT also did not change after 7 days of exercise at 50% VO2peak. However, plasma insulin response area was reduced (P < 0.05) after 7 days of exercise at 70% VO2peak (9,644 +/- 1,783 vs 7,538 +/- 1,522 microU.ml-1.180 min-1). In obese NIDDM subjects, both plasma glucose and insulin response areas during the OGTT did not decrease after 7 days of exercise at either 50 or 70% VO2peak. CONCLUSIONS: It is concluded that the exercise-induced improvement in insulin sensitivity is influenced by exercise intensity in obese individuals. The improved insulin sensitivity after 7 days of exercise at 70% VO2peak in obese individuals may be related to greater muscle glycogen utilization during exercise. The lack of improvement in glucose tolerance and insulin sensitivity after 7 days of exercise at either 50 or 70% VO2peak in obese NIDDM patients may be due to the fact that the NIDDM patients selected in the present study were relatively hypoinsulinemic.  相似文献   

12.
This study investigated the recovery of pancreatic insulin content during human islet isolation prior to and after digestion-filtration, continuous Hanks-Ficoll gradient purification (n = 20), and 3-4 day culture at 22 degrees C (n = 6). The native insulin content varied in a wide range from 28.4 U to 360.8 U/pancreas. After digestion the initially measured average insulin content of 115.8 +/- 20.8 U/pancreas (mean +/- SEM) increased to 264.6 +/- 22.8% (p < 0.001). This increase of insulin during pancreas digestion was attributed to the asymetrical distribution of insulin within the pancreas. Sampling of insulin within the pancreatic caput seemed not to be representative for the insulin content of the complete native organ, because the ratio of insulin per gram tissue within the pancreatic cauda compared to the caput (n = 5) was 2.4 +/- 0.4 (p < 0.05). After purification total insulin recovery was 55.3 +/- 4.8% (p < 0.001). Because recovery of islet equivalent number (IEQ) (83.7 +/- 4.4%) exceeded insulin recovery, insulin/IEQ ratio decreased from 656.8 +/- 70.6 microU/IEQ before purification to 436.4 +/- 58.1 microU/IEQ (p < 0.001) after purification. After 22 degrees C culture (n = 6) recovery of insulin and IEQ was 80.1 +/- 8.1% (p < 0.05) and 92.8 +/- 3.5% (p = NS), respectively. Insulin content per IEQ decreased to 85.8 +/- 6.5% (p < 0.05). This study clearly shows that most of islet insulin is lost during purification. This seems to be caused rather by an amplified insulin release than by the loss of islets itself. This release may facilitate the separation of endocrine and exocrine tissue by gradient centrifugation, but may also accelerate islet exhaustion detrimental for long-term insulin independence.  相似文献   

13.
Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU.kg-1.min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P < 0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 +/- 4 microU/ml in control and 66.4 +/- 5.3 microU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 microU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 +/- 0.8 mg.kg-1.min-1 for control rats while 2.1 +/- 0.3 mg.kg-1.min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg.min.dl-1, was 13.7 +/- 2.3 vs 3.3 +/- 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake.  相似文献   

14.
The aim of the present study was to estimate insulin secretion, insulin sensitivity (SI), and glucose effectiveness at basal insulin (SG) in subjects with bulimia nervosa. Eight bulimic patients and eight age-, body mass index-, and sex-matched healthy control subjects without a family history of diabetes were studied. The subjects all had normal glucose tolerance. They underwent a modified frequently sampled intravenous glucose tolerance test; glucose (300 mg/kg body weight) was administered, and insulin (4 mU/kg body weight/min) was infused from 20 to 25 minutes after administration of glucose. SI and SG were estimated by Bergman's minimal model method. Basal insulin (27 +/- 3 v 45 +/- 3 pmol/L) was significantly lower in bulimic patients than in normal controls (P < .05), but basal glucose was similar between the two groups (4.5 +/- 0.1 v 4.9 +/- 0.1 mmol/L, P > .05). The glucose disappearance rate (KG) and acute insulin response to glucose estimated by the intravenous glucose tolerance test (AIR(glucose)) were similar between the two groups (KG, 1.35 +/- 0.29 v 2.20 +/- 0.21 min(-1), P > .05; AIR(glucose), 2,920 +/- 547 v 2,368 +/- 367 pmol/L x min, P > .05). No significant difference was observed in SI between the two groups (1.34 +/- 0.18 v 1.25 +/- 0.20 x 10(-4) x min(-1) x pmol/L(-1), P > .05). On the other hand, glucose effectiveness at basal (SG) and zero (GEZI) insulin was significantly diminished in comparison to normal controls (SG, 0.011 +/- 0.002 v 0.024 +/- 0.002 min(-1), P < .01; GEZI, 0.008 +/- 0.002 v 0.017 +/- 0.003 min(-1), P < .01). Thus, bulimic patients with normal glucose tolerance without a family history of diabetes were characterized by normal insulin secretion, normal SI, and reduced SG and GEZI.  相似文献   

15.
OBJECTIVE: To investigate the acute effects of glibenclamide and glucagon-like peptide I (GLP-I) and their combination in perfused isolated rat pancreas and in patients with secondary failure to sulfonylureas. RESEARCH DESIGN AND METHODS: Rat islets were perfused with 10 nmol/l GLP-I in combination with 2 mumol/l glibenclamide. In human experiments, GLP-I (0.75 pmol. kg-1.min-1) was given as a continuous infusion during 240 min, while glibenclamide (3.5 mg) was administered orally. Eight patients participated in the study (age 57.6 +/- 2.7 years, BMI 28.7 +/- 1.5 kg/m2, mean +/- SE). In all subjects, blood glucose was first normalized by insulin infusion administered by an artificial pancreas (Biostator). RESULTS: GLP-I increased the insulinotropic effect of glibenclamide fourfold in the perfused rat pancreas. In human experiments, treatment with GLP-I alone and in combination with glibenclamide significantly decreased basal glucose levels (5.1 +/- 0.4 and 4.5 +/- 0.1 vs. 6.0 +/- 0.3 mmol/l, P < 0.01), while with only glibenclamide, glucose concentrations remained unchanged. GLP-I markedly decreased total integrated glucose response to the meal (353 +/- 60 vs. 724 +/- 91 mmol.l-1. min-1, area under the curve [AUC] [-30-180 min], P < 0.02), whereas glibenclamide had no effect (598 +/- 101 mmol.l-1. min-1, AUC [-30-180 min], NS). The combined treatment further enhanced the glucose lowering effect of GLP-I (138 +/- 24 mmol. l-1.min, AUC [-30-180 min], P < 0.001). GLP-I, glibenclamide, and combined treat-stimulated meal-induced insulin release as reflected by insulinogenic indexes (control 1.44 +/- 0.4; GLP-I 6.3 +/- 1.6, P < 0.01; glibenclamide 6.8 +/- 2.1, P < 0.01; combination 20.7 +/- 5.0, P < 0.001). GLP-I inhibited basal but not postprandial glucagon responses. Using paracetamol as a marker for gastric emptying rate of the test meal, treatment with GLP-I decreased gastric emptying at 180 min by approximately 50% compared with the control subjects (P < 0.01). CONCLUSIONS: In acute experiments on overweight patients with NIDDM, GLP-I exerted a marked antidiabetogenic action on the basal and postprandial state. The peptide stimulated insulin, suppressed basal glucagon release, and prolonged gastric emptying. The glucose-lowering effect of GLP-I was further enhanced by glibenclamide. This action may be at least partially accounted for by a synergistic effect of these two compounds on insulin release. Glibenclamide per se enhanced postprandial but not basal insulin release and exerted a less pronounced antidiabetogenic effect compared with GLP-I.  相似文献   

16.
Insulin lispro, an insulin analog recently developed particularly for mealtime therapy, has a fast absorption rate and a short duration of action. We compared insulin lispro and regular human insulin in the mealtime treatment of 1,008 patients with IDDM. The study was a 6-month randomized multinational (17 countries) and multicenter (102 investigators) clinical trial performed with an open-label crossover design. Insulin lispro was injected immediately before the meal, and regular human insulin was injected 30-45 min before the meal. Throughout the study, the postprandial rise in serum glucose was significantly lower during insulin lispro therapy. At the endpoint, the postprandial rise in serum glucose was reduced at 1 h by 1.3 mmol/l and at 2 h by 2.0 mmol/l in patients treated with insulin lispro (P < 0.001). The rate of hypoglycemia was 12% less with insulin lispro (6.4 +/- 0.2 vs. 7.2 +/- 0.3 episodes/30 days, P < 0.001), independent of basal insulin regimen or HbA1c level. The reduction was observed equally in episodes with and without symptoms. When the total number of episodes for each patient was analyzed according to the time of occurrence, the number of hypoglycemic episodes was less with insulin lispro than with regular human insulin therapy during three of four quarters of the day (P < 0.001). The largest relative improvement was observed at night. In conclusion, insulin lispro improves postprandial control, reduces hypoglycemic episodes, and improves patient convenience, compared with regular human insulin, in IDDM patients.  相似文献   

17.
Impaired glucose tolerance (IGT) and NIDDM are both associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose concentrations. The aim of this study was to establish if glucagon-like peptide 1 (GLP-1), a natural enteric peptide and potent insulin secretagogue, improves this defect. Two weight-matched groups, one with eight subjects having IGT (2-h glucose, 10.1 +/- 0.3 mmol/l) and another with seven subjects with diet-treated NIDDM (2-h glucose, 14.5 +/- 0.9 mmol/l), were studied on two occasions during a 12-h oscillatory glucose infusion, a sensitive test of the ability of the beta-cell to sense and respond to glucose. Glucose was infused with a mean rate of 4 mg x kg(-1) x min(-1), amplitude 33% above and below the mean rate, and periodicity of 144 min, with infusion of saline or GLP-1 at 0.4 pmol x kg(-1) x min(-1) for 12 h. Mean glucose levels were significantly lower in both groups during the GLP-1 infusion compared with during saline infusion: 9.2 +/- 0.4 vs. 6.4 +/- 0.1 mmol/l in the IGT subjects (P < 0.0004) and 14.6 +/- 1.0 vs. 9.3 +/- 0.7 mmol/l in NIDDM subjects (P < 0.0002). Despite this significant reduction in plasma glucose concentration, insulin secretion rates (ISRs) increased significantly in IGT subjects (513.3 +/- 77.6 vs. 583.1 +/- 100.7 pmol/min; P < 0.03), with a trend toward increasing in NIDDM subjects (561.7 +/- 122.16 vs. 642.8 +/- 128 pmol/min; P = 0.1). These results were compatible with enhanced insulin secretion in the presence of GLP-1. Spectral power was used as a measure of the ability of the beta-cell to secrete insulin in response to small changes in the plasma glucose concentration during the oscillatory infusion. Spectral power for ISR increased from 2.1 +/- 0.9 during saline infusion to 7.4 +/- 1.3 during GLP-1 infusion in IGT subjects (P < 0.004), but was unchanged in NIDDM subjects (1.0 +/- 0.4 to 1.5 +/- 0.6; P = 0.3). We concluded that low dosage GLP-1 improves the ability of the beta-cell to secrete insulin in both IGT and NIDDM subjects, but that the ability to sense and respond to subtle changes in plasma glucose is improved in IGT subjects, with only a variable response in NIDDM subjects. Beta-cell dysfunction was improved by GLP-1 infusion, suggesting that early GLP-1 therapy may preserve beta-cell function in subjects with IGT or mild NIDDM.  相似文献   

18.
Endothelium-dependent and -independent vascular responses were assessed in 10 NIDDM patients and 6 normal subjects with no evidence of atherosclerotic disease. Changes in forearm blood flow and arteriovenous (AV) serum nitrite/nitrate (NO2-/NO3-) concentrations were measured in response to intra-arterial infusion of acetylcholine (ACh) (7.5, 15, 30 microg/min, endothelium-dependent response) and sodium nitroprusside (SNP) (0.3, 3, 10 microg/min, endothelium-independent response). Insulin sensitivity (determined by minimal model intravenous glucose tolerance test) was lower in NIDDM patients (0.82 +/- 0.20 vs. 2.97 +/- 0.29 10(4) min x microU(-1) x ml(-1); P < 0.01). Baseline forearm blood flow (4.8 +/- 0.3 vs. 4.4 +/- 0.3 ml x 100 ml(-1) tissue x min(-1); NS), mean blood pressure (100 +/- 4 vs. 92 +/- 4 mmHg; NS), and vascular resistance (21 +/- 1 vs. 21 +/- 1 units; NS), as well as their increments during ACh and SNP, infusion were similar in both groups. No difference existed in baseline NO2-/NO3- concentrations (4.09 +/- 0.33 [NIDDM patients] vs. 5.00 +/- 0.48 micromol/l [control subjects]; NS), their forearm net balance (0.31 +/- 0.08 [NIDDM patients] vs. 0.26 +/- 0.08 micromol/l x 100 ml(-1) tissue x min(-1); NS), and baseline forearm glucose uptake. During ACh infusion, both NO2- and NO3- concentrations and net balance significantly increased in both groups, whereas glucose uptake increased only in control subjects. When data from NIDDM and control groups were pooled together, a correlation was found between the forearm AV NO2- and NO3- differences and blood flow (r = 0.494, P = 0.024). On the contrary, no correlation was evident between NO2- and NO3- concentrations or net balance and insulin sensitivity. In summary, 1) no difference existed in basal and ACh-stimulated NO generation and endothelium-dependent relaxation between uncomplicated NIDDM patients and control subjects; 2) in both NIDDM and control groups, forearm NO2- and NO3- net balance following ACh stimulation was related to changes in the forearm blood flow; and 3) ACh-induced increase in forearm blood flow was associated with an increase in glucose uptake only in control subjects but not in NIDDM patients. In conclusion, our results argue against a role of impaired NO generation and blood flow regulation in determining the insulin resistance of uncomplicated NIDDM patients; rather, it supports an independent insulin regulation of hemodynamic and metabolic effects.  相似文献   

19.
Effects of methyltestosterone on insulin secretion and sensitivity in women   总被引:2,自引:0,他引:2  
The frequent coexistence of hyperandrogenism and insulin resistance is well established; however, whether a cause and effect relationship exists remains to be established. In this study we tested the hypothesis that short-term androgen administered to women would induce insulin resistance. To test this hypothesis, regularly menstruating, nonobese women were studied before and during methyltestosterone administration (5 mg tid for 10-12 days) by the hyperglycemic (n=8) and euglycemic, hyperinsulinemic (n=7) clamp techniques. Short-term methyltestosterone administration had no significant effects on the fasting levels of glucose, insulin, c-peptide, glucagon, or glucose turnover. During the hyperglycemic clamp studies, the mean glucose level during the final hour was 203+/-2 and 201+/-1 mg/dL in the methyltestosterone and control studies, respectively. The insulin response to this hyperglycemic challenge was slightly but not significantly greater during methyltestosterone treatment (first phase 59+/-8 vs. 50+/-8 microU/mL in controls; second phase 74+/-9 vs. 67+/-9 microU/mL in controls; total insulin response 133+/-16 vs. 117+/-15 microU/mL in controls). In spite of this, glucose uptake was reduced from the control study value of 10.96+/-1.11 to 7.3+/-0.70 mg/kg/min by methyltestosterone (P < 0.05). The ratio of glucose uptake per unit of insulin was also significantly reduced from a control study value of 14.3+/-1.4 to 9.4+/-1.3 mg/kg/min per microU/mL x 100 during methyltestosterone administration. In the euglycemic hyperinsulinemic clamp studies, insulin was infused at rates of 0.25 and 1.0 mU/kg/min to achieve insulin levels of approximately 25 and 68 microU/mL, respectively. During low-dose insulin infusion, rates of endogenous hepatic glucose production were equivalently suppressed from basal values of 2.37+/-0.29 and 2.40+/-0.27 mg/kg/min to 0.88+/-0.25 and 0.77+/-0.26 mg/kg/min in the methyltestesterone and control studies respectively. Whole body glucose uptake during low-dose insulin infusion was minimally affected. During the high-dose insulin infusion, endogenous hepatic glucose production was nearly totally suppressed in both groups. However, whole body glucose uptake was reduced from the control value of 6.11+/-0.49 mg/kg/min to 4.93+/-0.44 mg/kg/min during methyltestosterone administration (P < 0.05). Our data demonstrate that androgen excess leads to the development of insulin resistance during both hyperglycemic and euglycemic hyperinsulinemia. These findings provide direct evidence for a relationship between hyperandrogenemia and insulin resistance, and its associated risk factors for cardiovascular disease.  相似文献   

20.
1. The cytochrome P450 (CYP) mixed-function oxidase system is widely distributed in body tissues and plays a key role in the metabolism of endogenous and exogenous compounds. Little attention has been paid to the expression of the system in the islets of Langerhans. The current study has examined the expression and potential role of the CYP1A family within the islets of Langerhans of control and 3-methylcholanthrene (3-MC)-induced Wistar rats. 2. CYP1A expression within pancreatic slices and islets from 3-MC-induced and control rats demonstrated that CYP1A-like protein levels were induced by 3-MC pretreatment (25 mg kg-1 day-1; i.p. for 3 days). 3. Effects of 3-MC-induction on beta-cell secretory responsiveness were investigated by use of rat collagenase-isolated islets. Insulin release from control islets incubated with 3 mM glucose (basal) was 1.4 +/- 0.2 ng/islet h-1 (mean +/- s.e.mean, n = 7). Incubation with 16.7 mM glucose, 25 mM KCl, 100 microM arachidonic acid, or 100 microM carbachol caused a 4.4, 7.0, 4.0 and 4.2 fold, respectively, increase in insulin release (P < 0.001). Forskolin (2 microM), or phorbol 12-myristic 13-acetate (10 nM) potentiated glucose-stimulated insulin release 1.2 and 1.6 fold (P < 0.01) whereas adenalin (1 microM) caused a 76% inhibition (P < 0.01). 4. Islets from 3-MC pretreated animals displayed similar responsiveness to all agents tested except arachidonic acid, carbachol and forskolin. Insulin release in response to arachidonic acid and carbachol was enhanced 5.2 and 5.0 fold, respectively, by 3-MC pretreatment (P < 0.001 compared to control islets incubated with 3 mM glucose); the effect of forskolin on insulin output was significantly decreased (20%; P < 0.01) compared to control islets. 5. 3-MC pretreatment did not cause any significant differences in food intake, plasma glucose or total islet insulin content. Incubation of islets with 3-MC in vitro (1 microM - 10 mM) did not affect basal or glucose-stimulated insulin release. 6. These data suggest that CYP1A-like protein expression within the pancreatic islets of Langerhans is inducible and may have a role in the alteration of pancreatic beta-cell secretory responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号