首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OFDM has been applied in the current wireless local-area networks and digital video broadcasting systems since it has the advantage over the conventional single-carrier modulation schemes when the frequency-selective fadings are present. Nevertheless, intercarrier-interference (ICI) due to Doppler frequency drift, phase offset, local oscillator frequency drift, and multipath fading will be a severe problem in OFDM systems. Previous ICI self-cancellation coding schemes can greatly reduce the ICI, but they are very sensitive to the phase ambiguity, which is due to the composite effect of the phase offset, the multipath fading and the local frequency drift. In this paper, the phase ambiguity and amplitude ambiguity problems in ICI self-cancellation coded OFDM receivers will be formulated and discussed. Then, a novel receiver which combines the current ICI self-cancellation coding techniques with a new expectation-maximization-based joint phase/amplitude estimation and symbol detection scheme is proposed. The outstanding performance of this proposed scheme is shown and compared with other existing methods at different noise levels through OFDM simulations.  相似文献   

2.
Orthogonal frequency division multiplexing (OFDM) has been applied in the current wireless local-area networks and digital video broadcasting since it is robust against the frequency-selective channels. However, there is still a crucial intercarrier-interference (ICI) problem due to Doppler effect, local frequency drift and sampling clock offset, associated with OFDM systems. Recently ICI self-cancellation schemes have been proposed to significantly reduce the ICI and empirically they greatly outperform the convolutional coding schemes adopted by the IEEE 802.11 standard. However, all existing ICI self-cancellation receivers are still sensitive to the phase and amplitude ambiguities due to the phase offset, the local oscillator frequency drift and the multipath reflections. Therefore, in this paper, a novel receiver design integrating the ICI self-cancellation with a proposed dynamic phase and amplitude estimation mechanism is introduced, which can well solve the ambiguity problem. The Monte Carlo simulation results show that our phase and amplitude estimators can greatly decrease the error probability for the final symbol detection in the ICI self-cancellation OFDM receivers.  相似文献   

3.
One of the challenges in designing orthogonal frequency-division multiplexing (OFDM) systems is their inherent sensitivity to any frequency shift in the signal. A frequency offset between the local oscillators at the transmitter and receiver causes a single frequency shift in the signal, while a time-varying channel can cause a spread of frequency shifts known as the Doppler spread. Frequency shifts ruin the orthogonality of OFDM subcarriers and cause intercarrier interference (ICI); therefore, quickly diminishing the performance of the system. ICI self-cancellation schemes have been proposed to reduce the sensitivity of OFDM systems to frequency shifts. These schemes use signal processing and frequency domain coding to reduce the amount of ICI generated as a result of frequency shifts, with little additional computational complexity. These methods can be used as an alternative to the fine frequency-offset estimation methods to battle oscillator frequency offset or simply be used as an ICI mitigation technique when the system is operating over time-varying channels. We propose a general ICI self-cancellation scheme that can be implemented through windowing at the transmitter and receiver. We show that the previously proposed self-cancellation schemes are equivalent to special cases of this method. Through theoretical analysis of the signal-to-interference ratio and bit-error rate and the use of Monte Carlo simulations, we demonstrate that the proposed system considerably outperforms the existing systems in the presence of frequency offset or time variations in the channel. We consider both coherent and noncoherent systems.  相似文献   

4.
Orthogonal frequency division multiplexing (OFDM) has been widely used for its robustness against multipath fading and low-complexity implementation. However, OFDM system, especially with large number of subcarriers and high modulation order, is severely affected by the phase noise of oscillators and carrier frequency offset (CFO). On the other hand, self-cancellation schemes have received a lot of attention due to their simple implementation and high efficiency to suppress inter-carrier interference (ICI) in OFDM systems. Among those ICI self-cancellation methods, symmetric conjugate symbol repetition (SCSR) has been proven to have the best bit error ratio (BER) performance for phase noise suppression. In this paper, the performance of OFDM systems with SCSR ICI self-cancellation in the presence of both phase noise (PHN) and CFO are investigated, and analytical expressions are derived to calculate error probability evaluated by symbol error ratio (SER) over additive white Gaussian noise (AWGN) and Rayleigh flat fading channels. An approach of second order approximation of PHN/CFO has been performed to estimate the residual ICI, which could provide more accurate results. Simulation results show perfect agreement with those obtained by theoretical analysis, which could be used to estimate OFDM system error probability, facilitating the design of the overall system.  相似文献   

5.
OFDM has been applied in a wide variety of wireless communications in recent years since it has the advantage over the conventional single-carrier modulation schemes when enduring the frequency-selective fading. However, intercarrier-interference (ICI) and interblock interference (IBI) due to the Doppler effect, carrier frequency drift of local oscillators and multipath fading limit the capability of OFDM systems. In this paper, a new generalized mathematical model for intercarrier and interblock interferences is derived for wireless mobile OFDM systems, in which Doppler frequency drift, local carrier frequency offset, multipath fading, and cyclic prefix coding are all present in reality. Such a new ICI/IBI model can be applied for OFDM performance evaluation in different environments. This new formulation of IBI and ICI provides a generalized framework which includes special ICI models appearing in the previous literature. Besides, the derived OFDM performance evaluation analysis in this paper can greatly benefit OFDM designers for wireless multimedia networks and digital video broadcasting technologies.  相似文献   

6.
For orthogonal frequency-division multiplexing (OFDM) communication systems, the frequency offsets in mobile radio channels distort the orthogonality between subcarriers resulting in intercarrier interference (ICI). This paper studies an efficient ICI cancellation method termed ICI self-cancellation scheme. The scheme works in two very simple steps. At the transmitter side, one data symbol is modulated onto a group of adjacent subcarriers with a group of weighting coefficients. The weighting coefficients are designed so that the ICI caused by the channel frequency errors can be minimized. At the receiver side, by linearly combining the received signals on these subcarriers with proposed coefficients, the residual ICI contained in the received signals can then be further reduced. The carrier-to-interference power ratio (CIR) can be increased by 15 and 30 dB when the group size is two or three, respectively, for a channel with a constant frequency offset. Although the redundant modulation causes a reduction in bandwidth efficiency, it can be compensated, for example, by using larger signal alphabet sizes. Simulations show that OFDM systems using the proposed ICI self-cancellation scheme perform much better than standard systems while having the same bandwidth efficiency in multipath mobile radio channels with large Doppler frequencies  相似文献   

7.
Orthogonal frequency division multiplexing (OFDM) is a very important modulation technique in wideband wireless communication and multimedia communication systems. While, it can effectively deal with multipath delay spread produced by frequency fading channels, its main drawback is the effect of frequency offset (FO) produced by the receiver local oscillator or by motion-induced Doppler. The FO breaks the orthogonality among the subcarriers and hence causes intercarrier interference (ICI). In this paper, ICI caused by frequency drift is eliminated by equalizing the complex weighting coefficients of interference. In most of the commonly used ICI cancellation schemes, bandwidth efficiency suffers because of the requirement of redundancy in the transmission. In the proposed scheme, repetition of data symbols or transmission of training sequence is not required. Thus, the bandwidth efficiency of normal OFDM system is maintained. The improved performance of the present scheme is confirmed through extensive simulations.  相似文献   

8.
The intercarrier interference (ICI) due to the Doppler frequency shift, sampling clock offset, time-varying multipath fading and local oscillator frequency offset becomes the major difficulty for the data transmission via the wireless orthogonal frequency division multiplexing (OFDM) systems. The existing ICI mitigation schemes involve the frequency-domain channel estimation/equalization or the additional coding and therefore require the pilot symbols which reduce the throughput. The frequency-domain channel estimation/equalization relies on the huge matrix inversion with high computational complexity especially for the OFDM technologies possessing many subcarriers such as digital video broadcasting (DVB) systems and wireless metropolitan-area networks (WMAN). In our previous work, we proposed a semi-blind ICI equalization scheme using the joint multiple matrix diagonalization (JMMD) algorithm and empirically showed that the proposed method significantly improved the symbol error rates for QPSK- and 16QAM-OFDM systems. In this paper, we discuss the sufficient condition for the theoretical ICI equalizability and also propose an alternative semi-blind ICI equalization method based on the joint approximate diagonalization of eigen-matrices (JADE) algorithm, which is much more computationally efficient than our previous method.  相似文献   

9.
Inter-carrier interference (ICI) self-cancellation schemes were often employed in many OFDM systems as a simple and effective approach to suppress ICI caused by carrier frequency errors. The same procedure, however, can not perform very well at high frequency offsets. We propose a simple decision feedback scheme based on the general ICI self-cancellation scheme to perform estimation and tracking of the carrier frequency offsets. A system with the scheme does not consume additional bandwidth since it used the same data symbols employed for ICI cancellation for the estimation. After an initial estimation is completed, the scheme switches to the tracking mode to carry out the estimation of deviations in the frequency offsets. Finally this fine-tuned estimate is applied to the ICI self-cancellation scheme concurrently for frequency offset correction and hence improved the system performance greatly. Simulation results showed that our scheme allowed up to 9% of random variations in the frequency offset. The effectiveness of our scheme is further verified by calculating the bit error rate performance of various OFDM receivers.  相似文献   

10.
OFDM系统对频率偏移极为敏感,频率偏移将导致子载波之间失去正交性,于是产生子载波干扰(ICI),从而降低系统性能。通过对有效抑制ICI的方法—ICI自消除算法进行研究,分析了ICI自消除算法对OFDM系统的影响。在软件无线电(GNU Radio)平台上搭建该系统,并在实际环境中运行。研究结果表明:与传统OFDM系统相比,ICI自消除算法使OFDM系统的误码率得到改善。  相似文献   

11.
Phase noise in orthogonal frequency division multiplexing (OFDM) systems destroys the orthogonality of the subcarriers and inter-carrier interference (ICI) is caused. In this paper, the ICI self-cancellation scheme is adopted to combat the ICI caused by phase noise in OFDM systems. Moreover, the error coefficients are defined and the theoretical expressions of carrier to interference ratio (C/I) with and without the ICI self-cancellation scheme are separately derived. From the simulation results, it is verified that the ICI self-cancellation scheme obviously decreases the amount of the ICI caused by phase noise and the improvement of C/I could reach 10 dB when the normalized 3 dB bandwidth of phase noise is 0.4. However, the convolutional coding OFDM (COFDM) system could supply more performance gain at the expense of increasing decoder complexity compared to OFDM system with the ICI self-cancellation scheme in the frequency-selective channel.  相似文献   

12.
在高速移动通信环境下,OFDM系统在传输过程中出现的多普勒频移和收发两端本地振荡器之间的频率偏差,形成子载波间干扰(ICI)并造成系统性能降低。在分析子载波间干扰机制的基础上,讨论了自消除方法和分段均衡方法,并提出一种利用加窗技术改进的分段均衡方法。仿真结果表明,采用该改进的分段均衡方法能更好地改善系统的性能,有约2 dB的信道估计增益。  相似文献   

13.
Intercarrier interference (ICI) self-cancellation, new ICI self-cancellation and conjugate cancellation schemes have been proposed in the literature to mitigate the effect of ICI. In this paper we have performed the mathematical analysis of PAPR performances for ICI self-cancellation, new ICI self-cancellation and ICI conjugate cancellation schemes and it is found that PAPR performance of these schemes are either very close to or poorer than the standard OFDM signal, which necessitates the requirement of PAPR reduction. After realizing the need of PAPR reduction in ICI cancellation schemes, we have proposed a joint scheme to reduce ICI and PAPR simultaneously. In this paper, we have proposed a multipoint partial transmit sequence (PTS) scheme, to improve the PAPR performance of ICI cancellation schemes. The proposed multipoint PTS based PAPR reduction scheme is coupled with ICI cancellation schemes in such a way that CIR performance of these schemes after coupling remains unchanged and no SI is required at the receiver to recover the original data signal. A comparison of CIR and PAPR performances for ICI cancellation schemes with and without PAPR reduction is also presented in this paper. The analytical results of CIR and PAPR performances for conventional ICI cancellation and joint ICI cancellation and PAPR reduction confirm the outperformance of the proposed scheme. We have also evaluated the SER performance of the joint schemes over additive white Gaussian noise and fading channels and presented a comparison with other existing schemes.  相似文献   

14.
An Improved ICI Reduction Method in OFDM Communication System   总被引:1,自引:0,他引:1  
Orthogonal frequency division multiplexing (OFDM) is a promising technique for the broadband wireless communication system. However, the inter-sub-carrier-interference (ICI) produced by the phase noise of transceiver local oscillator is a serious problem. Bit error rate (BER) performance is degraded because the orthogonal properties between the sub-carriers are broken down. In this paper, ICI self-cancellation of data-conjugate method is studied to reduce ICI effectively. CPE (common phase error), ICI and CIR (carrier to interference power ratio) are derived and discussed by the linear approximation of the phase noise. Then, the system performance of the data-conjugate method is compared with those of the original OFDM and the conventional data-conversion method. As results, it can be shown that CPE becomes zero in the OFDM of the data-conjugate method. Besides, in the OFDM system with phase noise, the data-conjugate method can make remarkable improvement of the BER performance and it is better than the data-conversion method and the original OFDM with or without convolution coding.  相似文献   

15.
In this paper, we propose three symbol synchronization schemes for Orthogonal Frequency Division Multiplex (OFDM) systems. The cyclic extension preceding OFDM symbols is of decisive importance for these schemes. The first scheme uses the phase‐differential coding of the received OFDM signal. The second and the third schemes use the length of the received OFDM signal. All three schemes make symbol synchronization possible, even though there is a frequency offset in the system. Simulation results show that these schemes can be used to synchronize an OFDM system over AWGN and multi‐path fading channels.  相似文献   

16.
现有的ICI自消除算法在提高系统载干比(CIR)的同时会降低系统的抗噪声性能。针对这一问题,提出一种在发送端对数据进行复数加权共轭运算的ICI自消除改进算法,这种算法造成的相位旋转最小,可以有效减少接收信号因相位旋转而导致的相位误差,从而提高系统的抗噪声性能。仿真结果表明,所提算法具有与已有算法相近的ICI抑制能力,但比现有算法具有更好的抗噪声性能。  相似文献   

17.
Novel semi-blind ICI equalization algorithm for wireless OFDM systems   总被引:2,自引:0,他引:2  
Intercarrier interference is deemed as one of the crucial problems in the wireless orthogonal frequency division multiplexing (OFDM) systems. The conventional ICI mitigation schemes involve the frequency-domain channel estimation or the additional coding, both of which require the spectral overhead and hence lead to the significant throughput reduction. Besides, the OFDM receivers using the ICI estimation rely on a large-dimensional matrix inverter with high computational complexity especially for many subcarriers such as digital video broadcasting (DVB) systems and wireless metropolitan-area networks (WMAN). To the best of our knowledge, no semi-blind ICI equalization has been addressed in the existing literature. Thus, in this paper, we propose a novel semi-blind ICI equalization scheme using the joint multiple matrix diagonalization (JMMD) algorithm to greatly reduce the intercarrier interference in OFDM. However, the well-known phase and permutation indeterminacies emerge in all blind equalization schemes. Hence we also design a few OFDM pilot blocks and propose an iterative identification method to determine the corresponding phase and permutation variants in our semi-blind scheme. Our semi-blind ICI equalization algorithm integrating the JMMD with the additional pilot-based iterative identification is very promising for the future high-throughput OFDM systems. Through Monte Carlo simulations, the QPSK-OFDM system with our proposed semi-blind ICI equalizer can achieve significantly better performance with symbol error rate reduction in several orders-of-magnitude. For the 16QAM-OFDM system, our scheme can also improve the performance over the plain OFDM system to some extent.  相似文献   

18.
The Bit Error Rate (BER) caused by Inter Carrier Interference (ICI) increases greatly with the increase of frequency offset in Orthogonal Frequency Division Multiplexing (OFDM) systems.According to a typical OFDM signal model,this letter proves that the coefficient matrix of ICI is a unitary matrix whose inverse matrix is much easier to get,and then proposes a new ICI cancellation method with less computation complexity by sending typical pilot symbols.Compared with two existing ICI cancellation methods,self-cancellation and windowing cancellation,it is shown that the proposed algorithm can cancel ICI better and overcome the limitation of the two traditional methods.  相似文献   

19.
Time-varying multipath channels distort the orthogonality between subchannels in orthogonal frequency-division multiplexing (OFDM) transmission. The loss of sub-channel orthogonality causes inter-subchannel interference (ICI), which limits the achievable bit-error probability (BEP) at high signal-to-noise ratio (SNR). In this paper, we propose a simple but very effective ICI self-cancellation algorithm. A pre-processor and a post-processor arc inserted in the transmitter and receiver, respectively. The pre-processor adds diversity to the frequency- domain symbols by time-domain periodical extension, while the post-processor uses this diversity to make most of the ICI self- cancelled. Our algorithm can provide a trade-off between ICI reduction and system throughput by adjusting the length of periodical extension. For the full-extension scheme, we show that the ICI can be completely removed if the channel variation of each path is linear with time within one extended symbol interval. We further propose an equivalent implementation of the post-processor such that the complexity of the receiver is the same as the standard OFDM receiver. This implementation also enables our algorithm to be readily combined with other OFDM algorithms of channel estimation, synchronization, coding, and so on that do not consider the ICI effect. Applying the proposed algorithm of ICI reduction makes these algorithms more applicable in fast-fading channels. To provide more insight on the ICI cancellation, we derive the equivalent channel effect of our algorithm. We also analyze the variance of ICI and observe the density function of the residual ICI in our algorithm, based on which we show a procedure to derive a BEP upper bound. The proposed algorithm is further validated by simulation and the comparison with another ICI self-cancellation algorithm.  相似文献   

20.
在高速移动通信环境下,OFDM 系统在传输过程中出现的多普勒频移和收发两端本地振荡器之间的频率偏差,形成子载波间干扰(ICI)并造成系统性能降低。该文在分析子载波间干扰机制的基础上,从信道估计的角度提出了一种高效的ICI自消除差分编码方案。该方案提高了传统ICI自消除方案频谱利用率。仿真表明,在系统归一化频率偏差大于0.1时,该方案具有4 的信道估计增益,消除了因ICI带来的地板效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号