首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weibull slopes, area scaling factors, and lifetime projection have been investigated for both soft breakdown and hard breakdown for the first time, in order to gain a better understanding of, the breakdown mechanism of HfO/sub 2/ gate dielectrics. The Weibull slope /spl beta/ of the hard breakdown for both the area dependence and the time-to-dielectric-breakdown distribution was found to be /spl beta/ = 2, whereas that of the soft breakdown was about 1.4. Estimated ten-year lifetime has been projected to be -2 V.  相似文献   

2.
Breakdown voltage distribution, Weibull slopes, and area scaling factors have been investigated for HfO/sub 2/ gate dielectrics in order to gain a better understanding of the breakdown mechanism. Weibull slope of thick HfO/sub 2/ (e.g., /spl beta//spl ap/4 for EOT=2.5 nm) is smaller than that of SiO/sub 2/ with similar physical thickness, whereas /spl beta/ of the thinner HfO/sub 2/ (e.g., /spl beta//spl ap/2 for EOT=1.4 nm) is similar to that of SiO/sub 2/. The implication of the thickness dependence of /spl beta/ is discussed.  相似文献   

3.
We have studied ultrathin Al/sub 2/O/sub 3/ and HfO/sub 2/ gate dielectrics on Ge grown by ultrahigh vacuum-reactive atomic-beam deposition and ultraviolet ozone oxidation. Al/sub 2/O/sub 3/-Ge gate stack had a t/sub eq//spl sim/23 /spl Aring/, and three orders of magnitude lower leakage current compared to SiO/sub 2/. HfO/sub 2/-Ge allowed even greater scaling, achieving t/sub eq//spl sim/11 /spl Aring/ and six orders of magnitude lower leakage current compared to SiO/sub 2/. We have carried out a detailed study of cleaning conditions for the Ge wafer, dielectric deposition condition, and anneal conditions and their effect on the electrical properties of metal-gated dielectric-Ge capacitors. We show that surface nitridation is important in reducing hysteresis, interfacial layer formation and leakage current. However, surface nitridation also introduces positive trapped charges and/or dipoles at the interface, resulting in significant flatband voltage shifts, which are mitigated by post-deposition anneals.  相似文献   

4.
The effects of high-temperature (600/spl deg/C) anneal in a dilute deuterium (N/sub 2/ : D/sub 2/= 96 : 4) atmosphere was first investigated and evaluated in comparison to high-temperature forming gas (N/sub 2/ : H/sub 2/= 96 : 4) anneal (600/spl deg/C) and nonanneal samples. The high-temperature deuterium anneal was as effective as the forming gas anneal in improving MOSCAP and MOSFET characteristics such as the C-V curve, drain current, subthreshold swing, and carrier mobility. These can be attributed to the improved interface quality by D/sub 2/ atoms. However, unlike the forming gas anneal, the deuterium anneal provided the hafnium oxide (HfO/sub 2/) gate dielectric MOSFET with better reliability characteristics such as threshold voltage (V/sub T/) stability under high voltage stress.  相似文献   

5.
Bi-layer gate stacks consisting of a HfO/sub 2/ and an interfacial layer are fabricated by remote plasma oxidation (RPO) of Hf metal deposited on an Si substrate. Hf metal is fully oxidized by the RPO even at a temperature as low as 400/spl deg/C due to radical oxygens, leading to an improvement in the quality of HfO/sub 2/ with less impact to the interfacial layer growth. An insufficient oxidation leads to a deterioration of mobility with increasing interface traps and positive bias temperature instability, which is likely caused by the oxygen vacancies acting as traps induced by the remaining Hf metal. The SiO/sub 2/-like interface improves the mobility with reduced interface states. Full oxidation and the controlled SiO/sub 2/-like interface demonstrate RPO as a promising way for gate-stack optimization.  相似文献   

6.
The performance improvement of ZnO thin-film transistors (TFTs) using HfO2/Ta2O5 stacked gate dielectrics was demonstrated. The ZnO TFTs exhibited transistor behaviour over the range 0-10 V; the field effect mobility, subthreshold slope and on/off ratio were measured to be 1.3 cm2 V-1 s-1, 0.5 V/decade and ~106, respectively.  相似文献   

7.
We report for the first time drive current enhancement and higher mobilities than the universal mobility for SiO/sub 2/ on Si in compressively strained Si/sub 1-x/Ge/sub x/-on-Si surface channel PMOSFETs with HfO/sub 2/ gate dielectrics, for gate lengths (L/sub G/) down to 180 nm. Thirty six percent drive current enhancement was achieved for Si/sub 0.8/Ge/sub 0.2/ channel PMOSFETs compared to Si PMOSFETs with HfO/sub 2/ gate dielectric. We demonstrate that using Si/sub 1-x/Ge/sub x/ in the channel may be one way to recover the mobility degradation due to the use of HfO/sub 2/ on Si.  相似文献   

8.
The magnitude of the V/sub T/ instability in conventional MOSFETs and MOS capacitors with SiO/sub 2//HfO/sub 2/ dual-layer gate dielectrics is shown to depend strongly on the details of the measurement sequence used. By applying time-resolved measurements (capacitance-time traces and charge-pumping measurements), it is demonstrated that this behavior is caused by the fast charging and discharging of preexisting defects near the SiO/sub 2//HfO/sub 2/ interface and in the bulk of the HfO/sub 2/ layer. Based on these results, a simple defect model is proposed that can explain the complex behavior of the V/sub T/ instability in terms of structural defects as follows. 1) A defect band in the HfO/sub 2/ layer is located in energy above the Si conduction band edge. 2) The defect band shifts rapidly in energy with respect to the Fermi level in the Si substrate as the gate bias is varied. 3) The rapid energy shifts allows for efficient charging and discharging of the defects near the SiO/sub 2//HfO/sub 2/ interface by tunneling.  相似文献   

9.
Mobility dependence on Si substrate orientations was investigated for HfO/sub 2/ MOSFETs for the first time. High-temperature (600 /spl deg/C) forming gas (FG) annealing (HT-FGA) was applied on the devices on both [100] and [111] substrates to evaluate the mobility for optimal interfacial quality. Using HT-FGA, D/sub it/ of the [111] devices was reduced down below 1 /spl times/ 10/sup 12/ cm/sup -2/V/sup -1/. Similar to SiO/sub 2/ devices, NMOS mobility of the [111] devices was lower than that of the [100] devices at higher effective fields, while it was reversed for PMOSFETs.  相似文献   

10.
In this letter, we present a comprehensive study on longterm reliability of ultrathin TaN-gated chemical vapor deposition gate stack with EOT=8.5-10.5. It is found that, due to the asymmetric band structure of HfO/sub 2/ gate stack with an interfacial layer, the HfO/sub 2/ gate stack shows polarity-dependent leakage current, critical defect density, and defect generation rate, under gate and substrate injection. However, no such polarity dependence of time-to-breakdown (T/sub BD/) is observed when T/sub BD/ is plotted as a function of gate voltage. The 10-year lifetime of an HfO/sub 2/ gate stack is projected to be Vg=-1.63 V for the equivalent oxide thickness (EOT) =8.6 and Vg=-1.88 V for EOT=10.6 at 25/spl deg/C. These excellent reliability characteristics are attributed to reduced leakage current of HfO/sub 2/ gate stack with physically thicker films that result in larger critical defect density and Weibull slope to that of SiO/sub 2/ for the same EOT. However, at 150/spl deg/C, and with area scaling to 0.1 cm/sup 2/ and low percentile of 0.01%, the maximum allowed voltages are projected to Vg=-0.6 V and -0.75 V for EOT of 8.6, and 10.6, respectively.  相似文献   

11.
A gate-first self-aligned Ge n-channel MOSFET (nMOSFET) with chemical vapor deposited (CVD) high-/spl kappa/ gate dielectric HfO/sub 2/ was demonstrated. By tuning the thickness of the ultrathin silicon-passivation layer on top of the germanium, it is found that increasing the silicon thickness helps to reduce the hysteresis, fixed charge in the gate dielectric, and interface trap density at the oxide/semiconductor interface. About 61% improvement in peak electron mobility of the Ge nMOSFET with a thick silicon-passivation layer over the CVD HfO/sub 2//Si system was achieved.  相似文献   

12.
For gate oxide thinned down to 1.9 and 1.4 nm, conventional methods of incorporating nitrogen (N) in the gate oxide might become insufficient in stopping boron penetration and obtaining lower tunneling leakage. In this paper, oxynitride gate dielectric grown by oxidation of N-implanted silicon substrate has been studied. The characteristics of ultrathin gate oxynitride with equivalent oxide thickness (EOT) of 1.9 and 1.4 nm grown by this method were analyzed with MOS capacitors under the accumulation conditions and compared with pure gate oxide and gate oxide nitrided by N/sub 2/O annealing. EOT of 1.9- and 1.4-nm oxynitride gate dielectrics grown by this method have strong boron penetration resistance, and reduce gate tunneling leakage current remarkably. High-performance 36-nm gate length CMOS devices and CMOS 32 frequency dividers embedded with 57-stage/201-stage CMOS ring oscillator, respectively, have been fabricated successfully, where the EOT of gate oxynitride grown by this method is 1.4 nm. At power supply voltage V/sub DD/ of 1.5 V drive current Ion of 802 /spl mu/A//spl mu/m for NMOS and -487 /spl mu/A//spl mu/m for PMOS are achieved at off-state leakage I/sub off/ of 3.5 nA//spl mu/m for NMOS and -3.0 nA//spl mu/m for PMOS.  相似文献   

13.
Ting  W. Li  P.C. Lo  G.Q. Kwong  D.L. 《Electronics letters》1989,25(11):689-691
High-quality oxynitride gate dielectrics have been fabricated by rapid thermal processing of LPCVD SiO/sub 2/ in reactive ambients (NH/sub 3/ and O/sub 2/). The as-deposited CVD oxides of 200 AA in thickness show no early breakdowns. The breakdown distribution becomes tighter, the interface state density is reduced, and the interface endurance property is improved after rapid thermal nitridation and reoxidation.<>  相似文献   

14.
A replacement gate process employing a HfN dummy gate and sub-1-nm equivalent oxide thickness (EOT) HfO/sub 2/ gate dielectric is demonstrated. The excellent thermal stability of the HfN-HfO/sub 2/ gate stack enables its use in high temperature CMOS processes. The replacement of HfN with other metal gate materials with work functions adequate for n- and pMOS is facilitated by a high etch selectivity of HfN with respect to HfO/sub 2/, without any degradation to the EOT, gate leakage, or time-dependent dielectric breakdown characteristics of HfO/sub 2/. By replacing the HfN dummy gate with Ta and Ni in nMOS and pMOS devices, respectively, a work function difference of /spl sim/0.8 eV between nMOS and pMOS gate electrodes is achieved. This process could be applicable to sub-50-nm CMOS technology employing ultrathin HfO/sub 2/ gate dielectric.  相似文献   

15.
Bias-temperature instabilities (BTI) of HfO/sub 2/ metal oxide semiconductor field effect transistors (MOSFETs) have been systematically studied for the first time. NMOS positive BTI (PBTI) exhibited a more significant V/sub t/ instability than that of PMOS negative BTI (NBTI), and limited the lifetime of HfO/sub 2/ MOSFETs. Although high-temperature forming gas annealing (HT-FGA) improved the interface quality by passivating the interfacial states with hydrogen, BTI behaviors were not strongly affected by the technique. Charge pumping measurements were extensively used to investigate the nature of the BTI degradation, and it was found that V/sub t/ degradation of NMOS PBTI was primarily caused by charge trapping in bulk HfO/sub 2/ rather than interfacial degradation. Deuterium (D/sub 2/) annealing was found to be an excellent technique to improve BTI immunity as well as to enhance the mobility of HfO/sub 2/ MOSFETs.  相似文献   

16.
High-performance low-temperature poly-Si thin-film transistors (TFTs) using high-/spl kappa/ (HfO/sub 2/) gate dielectric is demonstrated for the first time. Because of the high gate capacitance density and thin equivalent-oxide thickness contributed by the high-/spl kappa/ gate dielectric, excellent device performance can be achieved including high driving current, low subthreshold swing, low threshold voltage, and high ON/OFF current ratio. It should be noted that the ON-state current of high-/spl kappa/ gate-dielectric TFTs is almost five times higher than that of SiO/sub 2/ gate-dielectric TFTs. Moreover, superior threshold-voltage (V/sub th/) rolloff property is also demonstrated. All of these results suggest that high-/spl kappa/ gate dielectric is a good choice for high-performance TFTs.  相似文献   

17.
Metal-insulator-semiconductor capacitors were fabricated using atomic vapor deposition HfO/sub 2/ dielectric with sputtered copper (Cu) and aluminum (Al) gate electrodes. The counterparts with SiO/sub 2/ dielectric were also fabricated for comparison. Bias-temperature stress and charge-to-breakdown (Q/sub BD/) test were conducted to examine the stability and reliability of these capacitors. In contrast with the high Cu drift rate in an SiO/sub 2/ dielectric, Cu in contact with HfO/sub 2/ seems to be very stable. The HfO/sub 2/ capacitors with a Cu-gate also depict higher capacitance without showing any reliability degradation, compared to the Al-gate counterparts. These results indicate that HfO/sub 2/ with its considerably high density of 9.68 g/cm/sup 3/ is acting as a good barrier to Cu diffusion, and it thus appears feasible to integrate Cu metal with the post-gate-dielectric ultralarge-scale integration manufacturing processes.  相似文献   

18.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

19.
We present a physical modeling of tunneling currents through ultrathin high-/spl kappa/ gate stacks, which includes an ultrathin interface layer, both electron and hole quantization in the substrate and gate electrode, and energy band offsets between high-/spl kappa/ dielectrics and Si determined from high-resolution XPS. Excellent agreements between simulated and experimentally measured tunneling currents have been obtained for chemical vapor deposited and physical vapor deposited HfO/sub 2/ with and without NH/sub 3/-based interface layers, and ALD Al/sub 2/O/sub 3/ gate stacks with different EOT and bias polarities. This model is applied to more thermally stable (HfO/sub 2/)/sub x/(Al/sub 2/O/sub 3/)/sub 1-x/ gate stacks in order to project their scalability for future CMOS applications.  相似文献   

20.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号