共查询到18条相似文献,搜索用时 46 毫秒
1.
对分布式流数据中频繁项的发现算法进行了研究,利用一种新颖的分布式概要算法(DSA)来发现从叶子节点直至根节点的概要结构,通过在不同的分布状态下设置相应的精确梯度来最小化通信负载,并利用真实数据集验证了该结构和算法的有效性。 相似文献
2.
序列模式挖掘就是在时序数据库中挖掘相对时间或其他模式出现频率高的模式.序列模式发现是最重要的数据挖掘任务之一,并有着广阔的应用前景.针对静态数据库,序列模式挖掘已经被深入的研究.近年来,出现了一种新的数据形式:数据流.针对基于数据流的序列模式挖掘的研究还不是十分深入.提出一个有效的基于数据流的挖掘频繁序列模式的算法SSPM,利用到2个数据结构(F-list和Tatree)来处理基于数据流的序列模式挖掘的复杂性问题.SSPM的优点是可以最大限度地降低负正例的产生,实验表明SSPM具有较高的准确率. 相似文献
3.
针对Lossy Counting算法,即一个基于计数的确定性方案,提出一种新的基于权重的流数据频繁项挖掘算法(Lossy Weight),扩展了流数据频繁项的作用域.Lossy Weight算法不仅可用于传统的基于计数的频繁项挖掘,还可以挖掘出在整个流数据中所占权重比重大于门槛值的数据.实验数据分析证明该方案是有效的. 相似文献
4.
提出了一种流数据上的频繁项挖掘算法(SW-COUNT)。该算法通过数据采样技术挖掘滑动窗口下的数据流频繁项。给定的误差ε,SW-COUNT可以在O(ε-1)空间复杂度下,检测误差在εn内的数据流频繁项,对每个数据项的平均处理时间为O(1)。大量的实验证明,该算法比其他类似算法具有较好的精度质量以及时间和空间效率。 相似文献
5.
挖掘数据流的频繁项已受到广泛关注,研究者们提出了一些高效的数据流上挖掘频繁项的算法,尽管这些算法能够比较好地找到频繁项,但对频繁项支持度的估计往往存在较大误差.而新的算法REC(rotative efficient count) 除了能够保证频率超过一定阈值的数据项都能被找到,并且能够尽可能准确地返回其频率.分析和实验表明,相比当前最好的两种算法,REC算法空间在同样空间代价下,对数据项频率的估计更为准确,尤其在数据分布比较平缓时表现得尤为明显. 相似文献
6.
7.
8.
9.
10.
传统的频繁核心项集挖掘需多次生成和反复扫描数据库,导致生成效率低下。为此,提出一种快速生成频繁核心项集算法FMEP。该算法使用Rymon枚举树作为搜索空间,并采用分而治之的策略选择特定的路径进行剪枝。利用频繁核心项集特有的反单调性质,可以快速地判断某一个候选项集是否为频繁核心项集,而无需和所有直接子集的析取支持度进行比较。通过上述方法,可以达到快速挖掘的目的。实验结果证明,该算法能够在挖掘出所有的频繁核心项集精简表示元素的同时,降低消耗时间,与MEP算法相比,在密集型数据集上的时间可缩短2倍以上,在稀疏型数据集上时间至少缩短30%。 相似文献
11.
数据流的无限性、连续性和速度快等特点,使得挖掘出所有准确的数据流频繁项通常是不可能的.算法的空间复杂度和时间复杂度通常是评价频繁项挖掘算法优劣的两个主要度量.通过引入局部性原理改进数据流近似频繁项的挖掘算法,该算法的空间复杂性为O(1/ε),数据流每个数据项的最坏处理时间是O(1/ε),其最好处理时间是O(1),输出结果的频率值误差为∑_(i=2)^j(1-μi)×ki。 相似文献
12.
一种数据流中的频繁模式挖掘算法 总被引:1,自引:0,他引:1
时序数据流的无限性、流动性和不规则性使得传统的频繁模式挖掘算法难以适用。针对时序数据流的特点,提出了一类特殊非规则数据流频繁模式挖掘的新算法。新算法采用时序数据分段的思想,逐段挖掘局部频繁模式,然后依据局部频繁模式有效地挖掘出所有的全局频繁模式。将新算法应用于电信领域的收入保障项目之中,结果表明,新算法具有良好的性能,能有效发现挖掘时序数据流中的频繁模式。 相似文献
13.
14.
随着数据流应用领域的不断扩大,数据流频繁模式挖掘技术逐渐成为数据挖掘领域研究的核心问题。对DSFPM算法进行研究和改进,提出了一种基于界标窗口的数据流频繁模式挖掘算法DSMFP_LW。该算法实现了单边扫描数据流;利用扩展的前缀模式树存储全局临界频繁模式,实现数据增量更新。通过对比实验,结果证明DSMFP_LW算法有较好的时间开销和空间利用率,优于经典的Lossy Counting算法,适合数据流频繁模式挖掘。 相似文献
15.
因树型结构的良好表达能力,在互联网中传输的信息流越来越多以树型结构形式存储。但由于流式数据的时效性,隐含在数据流中的知识会随着时间的推移发生改变。针对数据流场景下挖掘最近时间段内的频繁子树模式的问题,提出了一种滑动窗口模型下挖掘频繁子树模式算法——SWMiner算法,用于挖掘数据流下任意时刻窗口下所有的频繁子树模式。SWMiner算法使用基于前缀树的结构来压缩存储生成的树模式,并且使用trie merging机制有效地更新子树模式的支持度。实验结果表明,SWMiner算法在滑动窗口模型中的性能优于目前现有的常用算法,能有效地挖掘最近时间段内的频繁树模式。 相似文献
16.
一种基于矩阵的频繁项集更新算法* 总被引:2,自引:0,他引:2
针对相关算法在处理频繁项集更新时所存在的问题,提出了一种基于矩阵的频繁项集更新算法。该算法首先以时间为基准将更新后的数据库分为原数据库和新增数据库,分别将它们转换为0-1矩阵,通过矩阵裁剪、位运算产生新增频繁项集,并利用已有频繁项集更新原有频繁项集。实验仿真结果不但证明了该算法的可行性和高效性,而且还证明了它适合大型、稠密性数据库的频繁项集更新。 相似文献
17.
拟采用一种基于滑动窗模式的单遍挖掘算法,专注于处理近期数据;为了减少处理时间和占用的内存,设计了一种新的事务表示方法。通过处理这个事务的表达式,频繁项集可以被高效输出,并解决了使用基于Apriori理论的算法时,由候选频繁1-项集生成频繁2-项集时数据项顺序判断不准确问题。该算法称为MRFI-SW算法。 相似文献
18.
李英杰 《计算机工程与应用》2009,45(3):161-164
项约束频繁项集挖掘是项约束关联规则挖掘的关键步骤。对项约束频繁项集挖掘的内涵进行讨论,认为一个项集X本身满足项约束条件B是不够的,数据库中支持X的全部事务均满足B才能称“项集X满足条件B”。据此,将Direct算法改进为Direct*,在Direct*中负项被作为一个独立的项来看待。项约束是简洁性约束,但目前已有的算法没有充分利用其简洁性,提出利用项约束简洁性的MSEB算法。实验表明:对稠密数据库,MSEB的效率较高,并且Direct*和MSEB两个算法均是正确的。 相似文献