首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We consider the design of trellis codes for transmission of binary images over additive white Gaussian noise (AWGN) channels. We first model the image as a binary asymmetric Markov source (BAMS) and then design source-channel optimized (SCO) trellis codes for the BAMS and AWGN channel. The SCO codes are shown to be superior to Ungerboeck's codes by approximately 1.1 dB (64-state code, 10-5 bit error probability), We also show that a simple “mapping conversion” method can be used to improve the performance of Ungerboeck's codes by approximately 0.4 dB (also 64-state code and 10 -5 bit error probability). We compare the proposed SCO system with a traditional tandem system consisting of a Huffman code, a convolutional code, an interleaver, and an Ungerboeck trellis code. The SCO system significantly outperforms the tandem system. Finally, using a facsimile image, we compare the image quality of an SCO code, an Ungerboeck code, and the tandem code, The SCO code yields the best reconstructed image quality at 4-5 dB channel SNR  相似文献   

2.
A novel optimal two stage coding for finite set of parallel flat‐fading MIMO channels with single common information source with specific constant rate requirement is derived. The optimality of suggested coding is achieved in terms of the capacity versus outage performance. The well‐known optimal coding rule relies on Gaussian codewords spanned over the whole available finite set of parallel channels. We prove that the equivalent preprocessing to the ideal interleaving is to re‐code independent parallel channels codewords by a linear inner precoder from a special class of unitary precoders complying with the optimality criterion derived in the paper. Performing such linear mixture of codewords sharing common Gaussian block‐wise codebook, the same capacity versus the outage is guaranteed without any interleaving over parallel channels. We utilize a virtual multiple access (VMA) channel approach to derive the optimality criterion. Selected precoders with various space‐time or time‐only domain span were tested against this criterion and we provide the optimality results on variety of the channel parameters. We showed that the temporal processing is the most important one to achieve the optimality of the precoder. A full space‐time precoding does not perform better than one which is temporal‐only. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We develop optimal probability loading for parallel binary channels, subject to a constraint on the total probability of sending ones. The distinctions from the waterfilling power loading for parallel Gaussian channels, particularly the latter's "dropping" of poor-quality channels, are highlighted. The only binary-input binary-output channel that is never dropped is the Z-channel.  相似文献   

4.
We propose a method for exploiting transmit diversity using parallel independent intersymbol interference channels together with an iterative equalizing receiver. Linear iterative turbo equalization (LITE) employs an interleaver in the transmitter and passes a priori information on the transmitted symbols between multiple soft-input/soft-output minimum mean-square error linear equalizers in the receiver. We describe the LITE algorithm, present simulations for both stationary and fading channels, and develop a framework for analyzing the evolution of the a priori information as the algorithm iterates.  相似文献   

5.
In this article, modulation diversity (MD) for frequency-selective fading channels is proposed. The achievable performance with MD is analyzed and a simple design criterion for MD codes for Rayleigh-fading channels is deduced from an upper bound on the pairwise error probability (PEP) for single-symbol transmission. This design rule is similar to the well-known design rule for MD codes for flat fading and does not depend on the power-delay profile of the fading channel. Several examples for MD codes with prescribed properties are given and compared. Besides the computationally costly optimum receiver, efficient low-complexity linear equalization (LE) and decision-feedback equalization (DFE) schemes for MD codes are also introduced. Simulations for the widely accepted COST fading models show that performance gains of several decibels can be achieved by MD combined with LE or DFE at bit-error rates (BERs) of practical interest. In addition, MD also enables the suppression of cochannel interference.  相似文献   

6.
Gore  D. Sandhu  S. Paulraj  A. 《Electronics letters》2001,37(20):1230-1231
Code construction criteria for frequency selective multiple input multiple output (MIMO) channels with single carrier modulation are derived. It is shown that the standard delay diversity code fails to exploit full diversity order in presence of delay spread. A generalised delay-diversity code which exploits full diversity is proposed  相似文献   

7.
Progressive image transmission is difficult in the presence of a noisy channel, mainly due to the propagation of errors during the decoding of a progressive bitstream. Excellent results for this problem are made possible through combined source-channel coding, a method that matches the channel code to the source operational rate distortion as well as channel conditions. This paper focuses on the key component of combined source-channel coding: rate allocation. We develop a parametric methodology for rate allocation in progressive source-channel coding. The key to this technique is an empirical model of decoded bit-error rate as a function of the channel code rate. We investigate several scenarios. In the case of the memoryless channel, we present closed-form expressions. For the fading channel and channels with feedback, where closed-form results are elusive, our analysis leads to low-complexity algorithms. The results presented are applicable to any progressive source code, and any family of channel codes.  相似文献   

8.
In this paper, we propose a novel iterative scheme for exploiting transmit diversity using parallel independent Inter-Symbol Interference (ISI) channels. In this adaptive iterative scheme, we use EXtrinsic Information Transfer (EXIT) chart tool to choose appropriate iterative method from Iterative Combining (IC), used as parallel concatenation turbo-like scheme, and Turbo Equalization (TE), used as serial concatenation turbo-like scheme. It is show that the proposed iterative scheme provides excellent performance both analytically and through simulations without any compute complexity increase comparable to IC.  相似文献   

9.
A communications system in which multiple parallel channels are available to carry traffic from a transmitter to a receiver is considered, and an extension of the selective-repeat automatic repeat request (SR-ARQ) protocol that dynamically assigns packets to channels for each (re)transmission is presented. Because of selective retransmission, packets arrive at the receiver out of order and must be stored in a resequencing buffer. A queuing model for the resequencing buffer is constructed. The generating function of the buffer occupancy and the packet-delay distribution are derived, and procedures for simplifying the computation are presented. The dynamic assignment scheme is compared with, and shown to have performance superior to, a static assignment scheme  相似文献   

10.
This paper devoted to report the design and the achievement of an optical communication subsystem with 12 parallel channels in one chip. The system is capable of,transmitting 10 Gbps bidirectional date over hundreds of meters. It can provide error detection and correction by using 8B/10B encoding and Cyclical Redundancy Checking (CRC) encoding when only single-channel fails. The design scheme has already passed the simulation in FPGA. This technique is useful to enhance the capability and the reliability of the very short reach (VSR) transmission systems.  相似文献   

11.
An antenna array is proposed as a means of achieving a space-diversity effect that partly overcomes the severity of continuous-time Rayleigh fading channels. The investigated channel is assumed to be frequency-nonselective with correlated diversity links, where the correlation is related to the array geometry and the spatial and Doppler dispersions. Further, the error performance is improved by bit interleaving and channel coding, where the encoders/channel is viewed as a serially concatenated system: a convolutional code constitutes the outer code, whereas a differential encoder and the fading channel (having truncated memory) form a joint inner code. In order to obtain a practical detector structure it is desirable to perform iterative decoding by applying some a posteriori probability (APP) algorithms. For this purpose, we propose a novel generalization of the well-known Bahl-Cocke-Jelinek-Raviv (1974) algorithm that calculates the APPs over channels having memory. Numerical results indicate that iterative decoding becomes more powerful when the exploited channel memory depth is extended. Also, the error performance is significantly improved by introducing multiple antennas. The interleaver gain is, however, seen to be quite moderate, in contrast to additive white Gaussian noise channels.  相似文献   

12.
Maximum achievable diversity order for cascaded Rayleigh fading channels   总被引:1,自引:0,他引:1  
Uysal  M. 《Electronics letters》2005,41(23):1289-1290
In this Letter, we investigate the error rate performance of coherent M-ary phase shift keying (M-PSK) modulation over cascaded Rayleigh fading with receive antenna diversity. Through the derived symbol error rate (SER) expression, we present the maximum diversity order achievable over such channels and demonstrate the performance degradation in comparison to conventional Rayleigh channels.  相似文献   

13.
This paper addresses the design and performance of time-recursive receivers for diversity based communication systems with flat Rayleigh or Ricean fading. The paper introduces a general state-space model for such systems, where there is temporal correlation in the channel gain. Such an approach encompasses a wide range of diversity systems such as spatial diversity, frequency diversity, and code diversity systems which are used in practice. The paper describes a number of noncoherent receiver structures derived from both sequence and a posteriori probability-based cost functions and compares their performance using an orthogonal frequency-division multiplex example. In this example, the paper shows how a standard physical delay-Doppler scattering channel model can be approximated by the proposed state-space model. The simulations show that significant performance gains can be made by exploiting temporal, as well as diversity channel correlations. The paper argues that such time-recursive receivers offer some advantages over block processing schemes such as computational and memory requirement reductions and the easier incorporation of adaptivity in the receiver structures.  相似文献   

14.
We examine adaptive equalization and diversity combining methods for fast Rayleigh-fading frequency selective channels. We assume a block adaptive receiver in which the receiver coefficients are obtained from feedforward channel estimation. For the feedforward channel estimation, we propose a novel reduced dimension channel estimation procedure, where the number of unknown parameters are reduced using a priori information of the transmit shaping filter's impulse response. Fewer unknown parameters require a shorter training sequence. We obtain least-squares, maximum-likelihood, and maximum a posteriori (MAP) estimators for the reduced dimension channel estimation problem. For symbol detection, we propose the use of a matched filtered diversity combining decision feedback equalizer (DFE) instead of a straightforward diversity combining DFE. The matched filter form has lower computational complexity and provides a well-conditioned matrix inversion. To cope with fast time-varying channels, we introduce a new DFE coefficient computation algorithm which is obtained by incorporating the channel variation during the decision delay into the minimum mean square error (MMSE) criterion. We refer to this as the non-Toeplitz DFE (NT-DFE). We also show the feasibility of a suboptimal receiver which has a lower complexity than a recursive least squares adaptation, with performance close to the optimal NT-DFE  相似文献   

15.
Good coded modulation for fading channels requires built-in time diversity. Under a constraint on the interleaving delay, the authors construct and compare three categories of coded M-DPSK (M-ary differential phase-shift keying) schemes with 4⩽M⩽16 for fading channels: two-dimensional trellis-coded, multidimensional trellis-coded, and block-coded. General rules for designing these schemes and their matched bit or symbol interleavers are given. A universal two-state interleaver is shown. These schemes have been extensively evaluated, using computer simulations, for a narrow-band cellular radio channel at different vehicle speeds, with and without twofold antenna diversity  相似文献   

16.
Average error probability and outage probability for an asynchronous direct sequence spread spectrum multiple access communications through slow nonselective Nakagami fading channels are evaluated for nondiversity and diversity receptions. Using the Gauss quadrature rule, the moments of the self-interference and the multiple access interferences are used to evaluate average error probability and outage probability. Combining the diversity technique and error correcting codes, comparisons between the uncoded nondiversity DS-SSMA system and that of the coded diversity system are shown for the Gold Code of codelength 127. Using fourth-order diversity and the Reed-Solomon code, the maximum achievable number of users is 12 percent of the codelength for Rayleigh fading, when the average probability is 10–3. The corresponding outage probability is less than 5 percent. Performance comparisons between Rician and Nakagami fading channels are made. Since the system is interference limited, the performance seems to show no significant difference for the two fading channel models when the number of users is large.  相似文献   

17.
Symbol and bit error rates of M-ary differentially encoded/differentially decoded phase-shift keying (MDPSK) and coherent M-ary phase-shift keying (M-PSK) over slow, flat, Rician fading channels are derived when linear diversity combining is applied to combat degradation due to fading. These closed-form solutions are general enough to cover several cases of nondiversity, additive white Gaussian noise (the nonfading mode), Rayleigh fading, mixtures of Rayleigh and Rician fading (the mixed mode), and Rician fading. The results presented here can also be applied to predict the error-rate performance when recent transmit diversity techniques are employed. The solutions for the nonuniform fading profile are included as well. Error probabilities are graphically displayed for both modulation schemes.  相似文献   

18.
19.
A method for computing the average bit-error probability of binary differential phase-shift keying (DPSK) and frequency shift-keying (FSK) signals transmitted over Nakagami asymptotically slow fading channels with postdetection diversity reception is presented to extend previously published results. The previously published results apply only for maximum ratio combining, i.e., with predetection combining, where phase coherency is necessary. The results for postdetection combining are derived with the explicit expressions for the most practical cases of independent channels and particular cases of correlated channels  相似文献   

20.
Switched diversity on microcellular Ricean channels   总被引:1,自引:0,他引:1  
The performances of switched dual diversity systems operating on independent and correlated Ricean fading channels are analyzed using a discrete time model. The average bit error rate (BER) of the discrete time switched diversity system using binary noncoherent frequency shift keying (NCFSK) on slow, nonselective Ricean fading channels is derived. A closed form expression that gives the optimum switching threshold in a minimum error rate sense is derived for the case of independent branch signals. Results for the optimum switching threshold for the case of correlated branch signals, obtained numerically, are also presented. Results using selection diversity combining are obtained for comparison. The effects of fading severity on both the BER and on the optimum switching threshold are investigated. The Ricean fading model may be used to model both the microcellular radio environment and the mobile satellite fading channel. Hence, the results of the paper are useful for both of these areas  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号