共查询到18条相似文献,搜索用时 53 毫秒
1.
基于声信号多重分形和支持向量机的目标识别研究 总被引:1,自引:0,他引:1
为提高智能地雷对地面装甲目标的识别率,针对地面装甲目标辐射的噪声信号具有非线性的特性,建立了一种基于多重分形和支持向量机(SVM)相结合的分类识别模型。通过野外场地实验,采集到两种装甲目标在不同工况(运行速度)下的各40组样本信号;利用多重分形分析计算得到两种目标信号的广义分形维数谱(GFDS),分析了两种目标信号在不同工况下多重分形谱的特征;将GFDS值作为目标特征向量输入SVM分类模型,经训练得到最优分类结果,并与小波包能量(WPE)法提取样本特征后输入SVM的识别效果进行了对比,结果表明前者的识别率达到92.5%,高于后者的85%的识别率。 相似文献
2.
支持向量机的手写体数字识别中,采用美国邮政服务数据库.并取多个2层神经网络中的最好者得出2层神经网络结果,专门设计5层卷积神经网络Lenetl.所有的结果均直接采用点阵输入,将像素值归正到相应区域间,且不施加任何预处理.该方法与人工分类、神经网络、决策树等方法比较,其测试误差低,测试速度高. 相似文献
3.
隐马尔可夫模型和支持向量机混合模型声识别 总被引:2,自引:0,他引:2
为弥补单一模型在识别低空飞行目标时的不足,进一步提高低空飞行目标的识别率,提出一种基于HMM和SVM混合结构的低空飞行目标声识别算法.针对战场环境下声信号的特点,算法综合考虑HMM适合处理连续动态信号及SVM小样本情况下的强分类能力,利用HMM处理待辨识的连续动态信号,将HMM易混淆的信号作为与待辨识信号较为相似的模式类,形成候选模式集,再由SVM在候选模式中对待辨识信号作最后决策.实际数据的识别结果表明相对于单一的HMM和SVM,混合模型的识别率有一定的提高. 相似文献
4.
为解决数据源中相似重复记录样本稀少问题,提出一种基于多目标蚁群优化的单类支持向量机相似重复记录分类检测方法。根据记录对中2条记录是否相似,将相似重复记录检测建模为二分类问题,用单类支持向量机进行分类,并且只用不相似重复记录样本对进行训练;选择合适的属性相似度函数计算记录对之间的相似特征向量,将其作为单类支持向量机分类器的输入进行二分类检测;建立以查准率、查全率、特征数量综合最优为目标的多目标特征选择模型,结合训练样本为单类样本的特点,将启发式因子定义为类内散度最小化约束,设计了求解模型的多目标蚁群算法。通过将单类支持向量机算法和支持向量域描述算法、传统二分类支持向量机算法进行对比,结果验证了单类支持向量机算法的有效性和优越性。 相似文献
5.
以支持向量机(SVM)作为分类器。研究了雷达目标高分辨距离像(HRRP)分类法,设计了相应的预处理算法,提出一种结合留一法和单一验证法的参数选择新方案。基于三种雷达目标的HRRP数据,比较了SVM分类法和匹配相关分类法性能。实验结果表明SVM算法在目标姿态的稳定性、对训练集大小的稳定性和抗噪能力方面都占有相当优势。 相似文献
6.
7.
为提高毫米波雷达目标识别能力,提出一种基于Gabor原子变换和支持向量机(SVM)的雷达目标识别方法。该方法充分利用了Gabor原子变换在信号表示方面的有效性以及SVM在分类方面的优越性,首先将雷达回波信号进行Gabor原子变换,获得信号的特征量,然后利用SVM网络进行分类识别。实验结果表明:该方法可行且具有较高的识别率。 相似文献
8.
9.
基于支持向量机的磨削参数决策系统通过多传感器信息融合获得磨削状态信息,用支持向量机分类器对其分类.经建立样本数据、选取核函数及其参数并求解拉格朗日系数,找出支持向量.再求解分类超平面系数,建立训练数据最优决策超平面,并根据样本数据学习.系统按分类学习结果自动选择工艺参数以控制磨削加工质量. 相似文献
10.
针对雷达目标样本缺乏以及高输入模式维数的分类问题,提出利用一种稀疏概率模型--相关向量机(RVM)对雷达目标的一维距离像进行识别.与支持向量机(SVM)相比,其训练是在贝叶斯框架下进行的,不仅解更稀疏,而且无需调整模型参数.使用RVM与SVM识别同样的雷达目标一维距离像,结果表明:RVM模型更为简单,减少了运算量,但能获得更精确的分类结果. 相似文献
11.
12.
13.
14.
15.
16.
17.