首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Si掺杂放电等离子合成Ti2AlC/Ti3AlC2材料及理论分析   总被引:4,自引:0,他引:4  
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.0Ti/1.0Al/0.1Si/1.0C、2.0Ti/1.0Al/0.2Si/1.0C、2.0Ti/0.9Al/0.2Si/1.0C和2.0Ti/1.0Al/0.3Si/1.0C,在1 200 ℃合成了Ti2AlC/Ti3AlC2块体材料.通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分.结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC2 3种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化.应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程.  相似文献   

2.
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.OTi/l.0Al/0.1Si/1.0C、2.0Til1.0Al/0.2Si/1.0C、2.0Ti/0、9Al/0.2Si/1.0(2和2.0Ti/1.0Al/0.3Si/1.0C,在1200℃合成了Ti2AlC/Ti3AlC2块体材料。通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分。结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC23种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化。应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程。  相似文献   

3.
分别用3Ti-Al-2C和2TiC-Ti-Al粉用原位热压技术制备Ti3AlC2陶瓷.采用XRD、DTA、SEM等测试手段研究其物相组成、反应过程及显微结构.结果表明:1300 ℃下3Ti-Al-2C体系的合成产物为层状Ti3AlC2、TiC和Al2O3相,1500 ℃下2TiC-Ti-Al体系的合成产物基本为层状Ti3AlC2相,纯度较高.在Ti-Al-C体系中,首先发生Ti与C反应生成TiC,接着发生Ti与Al反应相继生成TiAl3和TiAl,随后发生TiAl和TiC反应生成Ti2AlC,最后Ti2AlC和TiC反应生成Ti3AlC2.同时,分析了TiC掺杂对TiC-Ti-Al体系原位合成Ti3AlC2的影响.  相似文献   

4.
添加TiC对燃烧合成Ti2AlC粉体的影响   总被引:6,自引:0,他引:6  
实验表明,以Ti,Al和碳黑单质粉末为反应物原料,按Ti2AlC化学计量比为原料摩尔配比,得到的燃烧产物主晶相为Ti3AlC2,而Ti2AlC的含量很少。当保持总原料各组分配比不变,加入TiC时,燃烧产物中的Ti2AlC相却变为主晶相,而Ti3AlC2和TiC相的含量急剧减少。燃烧产物Ti2AlC相的含量随添加的TiC质量分数(0-25%)的增加而增加。从动力学和热力学的角度探讨了TiC对燃烧合成Ti2AlC的影响机理。  相似文献   

5.
利用Al-Ti-C体系的放热反应,通过真空热压烧结,原位合成了Ti2AlC/TiAl复合材料.借助于XRD,SEM,OM分析及力学性能测试,分析了Ti2AlC/TiAl复合材料微观组织与性能的关系,探讨了Ti2AlC增强增韧TiAl金属间化合物的机制.结果表明,其增强相为Ti2AlC,并有微量的Ti3AlC生成,基体相为TiAl.Ti2AlC的生成,细化了晶粒,其层状结构阻止了裂纹扩展.力学性能测试表明,该材料抗弯强度可达743.84 MPa,断裂韧度可达9.17 MPa.m1/2.  相似文献   

6.
以Ti3AlC2和Cu粉作为原料,原位热压制备一系列Cu/Ti3AlC2复合材料,并研究Ti3AlC2含量对复合材料生成相、显微组织、力学和电学性能的影响。实验结果表明,在1150℃的高温下,不管Ti3AlC2的含量,Al都从Ti3AlC2中溶出进入液相Cu中,反应生成新的复合相。当Ti3AlC2原料的体积分数为40%~60%时,复合材料由Ti3C2相和Cu(Al)合金相组成。Cu/Ti3AlC2复合材料具有高强度及良好的断裂韧性和导电性,归因于Ti3C2聚集薄层与Cu(Al)合金层之间的牢固结合以及Cu(Al)相构成的空间网络结构。当Ti3AlC2原料的体积分数为70%或80%时,复合材料由Ti3C2和Cu9Al4金属间化合物组成,随着Ti3AlC2含量的增加,其强度和断裂韧性减小,硬度和电阻率增大。  相似文献   

7.
采用放电等离子烧结工艺,以Ti,Al,B4C,TiC为原料制备Ti3AlC2/TiB2复合材料。通过X射线衍射分析了从600℃到1300℃Ti3AlC2/TiB2系统反应过程的相形成规律。用扫描电镜观察了不同温度下试样的显微组织演变。结果表明,在900℃之前,主要的反应是Ti和Al反应生成Ti—Al金属间化合物,900℃之后,Ti—Al金属间化合物与TiC逐渐生成Ti3AlC2和TiB2相,形成致密Ti3AlC2/TiB2复合材料。  相似文献   

8.
以三元层状陶瓷材料Ti3AlC2与Al粉为原料进行无压真空烧结。通过改变烧结温度、保温时间及原料配比,研究了反应的过程及生成相。采用XRD、SEM分析了反应产物和界面。研究表明:Ti3AlC2与Al在923 K条件下保温120 min后有明显的新相生成,产物为Al3Ti、Al4C3;延长保温时间及升高温度有利于反应的发生,反应可用以下方程进行描述:Ti3AlC2+Al→Al3Ti+Al4C3;反应中Al元素向Ti3AlC2中扩散,在Ti3AlC2与Al之间形成了明显扩散层。  相似文献   

9.
燃烧合成三元碳化合物Ti2AlC1-x   总被引:1,自引:0,他引:1  
采用Ti,Al和C元素粉末为反应物原料,通过燃烧合成法首次成功地制备出了单相三元碳化合物Ti2AlC1-x。实验结果表明:若以“理想”晶体结构化学式Ti2AlC化学计量比为起始反应原料配比,燃烧产物主晶相为Ti2AlC2;以缺碳的非化学计量比(Ti2AlC1-x)为反应原料配比,即Ti:Al:C=3:1.5:1=2:1:0.7(摩尔比),得到单相的燃烧产物Ti2AlC1-x。从热力学原理的角度探讨了不同原料摩尔配比对燃烧产物相组成的影响机理。  相似文献   

10.
通过TG-DTA、XRD、SEM和EDS的分析,研究Ti3AlC2与Fe在高温下的互相反应。结果表明,当烧结温度在659.9℃以上时,Ti3AlC2与Fe主要以放热反应为主,当烧结温度为760~1045℃时,Ti3AlC2与Fe之间的反应较弱,并开始生成TiC0.625相;随着烧结温度升到1045℃时,Ti3AlC2的衍射峰逐渐消失,烧结产物的衍射峰只有TiC0.625和Fe(Al)固溶体;随着温度的进一步升高,烧结产物的衍射峰基本为TiC0.625和Fe(Al)固溶体不变。采用SEM和EDS分析可知,该反应主要发生了两个过程,其一,Ti3AlC2发生了分解,Ti3AlC2中的Al发生了析出,并固溶到基体的金属相中形成Fe(Al)固溶体,而Ti3AlC2中Ti和C则形成了TiC0.625陶瓷相。其二,Fe原子沿着Ti3AlC2分解形成的Al空位渗入到Ti3AlC2颗粒中,进而导致Ti3AlC2进一步分解成粒径更小颗粒。Ti3AlC2中Al的析出是导致Ti3AlC2在远低于其分解温度下就与Fe发生反应的主要因素。  相似文献   

11.
利用TiC粉、Ti粉和Al粉为原料,以摩尔比为TiCAlTi=21.21混合,通过无压烧结的方法合成高纯的Ti3AlC2粉末材料.研究了在不同的烧结温度(1200℃~1500℃)分别保温15 min,以及在1300℃下保温不同时间的烧结结果.最终得出结论,在1300℃~1400℃保温15 min后可以得到高纯度的Ti3AlC2材料,Ti3AlC2含量高达96.76ω/%.另外,由于1500℃时合成的样品中晶粒已经很大,使得其在做粉末X-射线衍射时很容易产生织构,使Ti3AlC2的{002}峰异常增强.  相似文献   

12.
经过2,5,7,9 kV放电电压作用后,分析了受电弓材料Ti3AlC2和Cu-Ti3AlC2的电弧烧蚀性。Cu-Ti3AlC2材料的电弧寿命和击穿电流都比Ti3AlC2的低。用高速摄影机记录2种材料的电弧形态。结果表明,Ti3AlC2上的电弧要比Cu-Ti3AlC2的电弧更加集中,伴随着更多的液滴飞溅。采用扫描电镜(SEM)观察了被侵蚀的2种材料表面情况。和Cu-Ti2AlC2的表面相比,Ti3AlC2的表面更加不均匀,表面覆盖有"孔洞","显微裂纹"和"飞溅物"。计算了不同电压下的电弧能量,在相同电压下,Cu-Ti3AlC2材料的电弧能量小于Ti3AlC2材料。采用拉曼光谱法测定了被烧损样品表面的成分。实验表明,Cu-Ti3AlC2更适合于做受电弓材料。  相似文献   

13.
以Ti、Al、C粉、立方氮化硼磨料为原料,采用自蔓延高温合成法制备Ti3AlC2陶瓷结合剂立方氮化硼复合材料。研究Al的摩尔量、CBN浓度对复合材料制备的影响。通过XRD、SEM、EDS表征方法,对制备的复合材料进行物相及组织结构分析。研究结果表明:添加CBN浓度25%的3Ti/1.2Al/2C的试样,自蔓延反应生成的Ti3AlC2较多,且晶体发育良好。CBN参与Ti-Al-C体系的反应,在CBN表面与基体之间形成了硼化物、氮化物的过渡层,实现了磨料与结合剂的化学键合,提高了基体对磨料的把持力。  相似文献   

14.
机械合金化制备Ti3AlC2陶瓷材料的研究   总被引:1,自引:0,他引:1  
采用Ti,Al和C元素粉末为反应物原料,通过机械合金化法成功地制备出高含量三元碳化合物Ti3AlC2陶瓷粉体.按Ti3AlC2化学计量比为起始反应原料配比(Ti∶Al∶C=3∶1∶2)的元素混合粉末,经3 h的机械合金化后,Ti、Al和C单质混合粉末发生化学反应,生成以Ti3AlC2为主晶相,并含有少量TiC的混合粉体和小块体;粉体中Ti3AlC2的含量达到83%(质量分数,下同).产物合成的原因是在Ti-Al-C体系中发生了一种机械诱发自蔓延反应.  相似文献   

15.
Sn做助剂机械合金化+热处理制备Ti_3AlC_2   总被引:1,自引:0,他引:1  
以3Ti/Al/2C/0.1Sn粉体为原料,进行机械合金化,并对粉体产物进行热处理,制备高含量Ti3AlC2材料,并分析了产物的微观形貌。机械合金化3Ti/Al/2C粉体,可合成TiC、Ti3AlC2和Ti2AlC混合粉体产物。添加适量Sn可消除产物中的Ti2AlC,明显促进Ti3AlC2合成。对粉体产物进行热处理,可以提高产物Ti3AlC2含量。热处理温度过低或过高都不利于Ti3AlC2含量的提高。随着热处理温度的提高,晶粒长大明显,烧结倾向加剧,研磨困难。在900℃可以获得质量分数为95.2%的Ti3AlC2。热处理产物颗粒比较细小,可做复合材料的原料。  相似文献   

16.
通过无压烧结技术和机械合金化技术,在烧结温度为870 °C,保温时间为2.5h的工艺条件下,制备了四种不同体积含量的Ti3AlC2 颗粒含量的Ti3AlC2/ZA27复合材料。研究了Ti3AlC2 颗粒含量对Ti3AlC2 /ZA27复合材料的硬度,密度,拉伸强度和弯曲强度的影响。结果表明界面处的微弱的化学反应有助于提高复合材料的界面结合能力,进而提高Ti3AlC2 /ZA27复合材料的机械性能。此外,随着Ti3AlC2 颗粒含量增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度都随之增大,这主要归因于纳米尺度的Ti3AlC2颗粒的弥散增强结果。然而,随着Ti3AlC2 颗粒的增加到40 vol. %, 由于孔隙的增多,Ti3AlC2 /ZA27复合材料的硬度和力学强度又出现下降。对比制得的四种Ti3AlC2 /ZA27复合材料,30Ti3AlC2/ZA27复合材料拥有最大的抗拉强度、抗弯曲强度以及维氏硬度,分别为310 MPa,528 MPa 和1.24 GPa. 这些优异的性能除了归因于良好的界面结合,还归因于Ti3AlC2颗粒的细晶强化和弥散强化作用。  相似文献   

17.
采用自蔓延燃烧合成及真空电弧熔炼的方法,以碳纤维(Cf)、钛粉及铝粉为原料,合成了Ti2AlC/TiAl复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了复合材料的物相组成和微观结构,讨论了原位合成Ti2AlC的反应和二次Ti2AlC的析出过程。结果表明,复合材料铸锭由Ti2AlC、TiAl和Ti3Al3相组成,基体由α2(Ti3Al)+γ(TiAl)片层和γ(TiAl)等轴晶粒构成,原位自生的Ti2AlC分布均匀,呈短纤维状或颗粒状。1200℃均匀化热处理促使Ti3Al分解为TiAl和Ti2AlC,导致Ti2AlC粗化,同时基体表面析出细小的二次Ti2AlC颗粒。  相似文献   

18.
以Cr、Al、Cr_3C_2为原料,在700~1350℃温度范围内氩气环境下,采用无压烧结法合成Cr_2AlC陶瓷粉体。研究了原料组成、烧结温度对合成Cr_2AlC的影响。结果表明,原料摩尔比为1 Cr_3C_2/2.2Al/1Cr,温度1250℃时,样品中含有少量Cr_7C_3杂质,温度升高到1350℃时,获得高纯的Cr_2AlC陶瓷。温度低于800℃时,Cr_3C_2和Al反应生成Cr_2AlC和Al_4C_3。950℃时Cr2Al和C反应得到Cr_2AlC。1350℃Cr_2Al、Cr_3C_2和Al反应生成目标相Cr_2AlC。用Kissinger方法和Owaza方法计算得到反应的表观活化能分别为362.24 k J/mol和389.01 k J/mol。  相似文献   

19.
对Ti3AlC2块体材料在1050~1450℃进行真空热处理,分析了该材料在热处理前后的物相组成和显微组织形貌。结果表明:经1050℃热处理后出现了新相Al3Ti到1250℃时该相消失;从1050~1250℃随温度升高Ti3AlC2含量逐渐增加,TiCx含量逐渐减少;经1250℃热处理之后,材料密度增加到4.01 g/cm3,Ti3AlC2含量增加到94.2%,Ti3AlC2晶粒长15~20μm、厚约2μm;从1250~1450℃随温度升高Ti3AlC2含量逐渐减少,TiCx含量逐渐增加,经1450℃热处理之后Ti3AlC2含量减为74.8%。因此,1250℃为Ti3AlC2块体材料最佳热处理温度。  相似文献   

20.
一种Cu/Ti3AlC2复合材料及其浸渗烧结制备方法。该材料中Ti3AlC2的体积含量为25%~85%,其余为Cu;该材料的制备方法:将Ti3AlC2粉末冷压成空隙率为15%~75%的坯体,将此坯体置于石墨坩埚内用Cu粉埋覆,在氩气保护下将炉温升至1100~1200℃.保温10~60min.熔融的Cu借助于Ti3AlC2颗粒之间的界面张力浸渗到Ti3AlC2坯体的空隙,冷却后即得到本发明的Cu/Ti3AlC2复合材料;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号